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Abstract
An adaptive control system adjusts its parameters during the control process. This happens

according to de�ned rules. This thesis introduces and explains the following rules and systems:

gain scheduling, high-gain control, self-oscillating adaptive system, model reference adaptive

control, self-tuning regulators, model identi�cation regulator and stochastic control. This pro-

vides an overview of the adaptive approaches and shows the underlying considerations, as well

as the development and necessity, of increasingly complex controllers. The Model Reference

Adaptive Controller (MRAC) adapts by means of comparison to a chosen reference system. This

adaptation can be done according to the rule of the Massachusetts Institute of Technology (MIT

rule) or the Stability Proofed Rule (SPR rule) - MIT with better empiric results and SPR with a

mathematical proof of stability. Both methods are explained and mathematically derived. The

Modi�ed MRAC is a combination of an adaptive control and PID-controller, which leads to bet-

ter results when rapidly changing the system. In this thesis a Modi�ed Model Reference Adap-

tive Controller for controlling the altitude of a quadrocopter will be set up, implemented and

evaluated. The requirements of the implemented system are to restore or even hold the �ight

dynamics when changing a system’s mass rapidly, and to compensate the impact of the change.

This will be done with a reference system of the second order.



Zusammenfassung
Eine Adaptive Regelung beschreibt eine Regelung, die bestimmte Parameter im Laufe des

Reglungsprozesses anpasst. Dies folgt bestimmten Regeln. Von diesen Reglern, beziehungsweise

Systemen, werden die folgenden vorgestellt: gain scheduling, high-gain control, self-oscillating

adaptive system, model reference adaptive control, self-tuning regulators, model identi�cation

regulator und stochastic control. Dies gibt einen Überblick über die verschiedenen Methoden

und zeigt den gedanklichen Weg, die Entwicklung und Notwendigkeit von komplexeren adap-

tiven Systemen. Der Model Reference Adaptive Controller adaptiert mittels Vergleich zu einem

gewählten Refernzsystem. Der eigentliche Schritt der Adaption nutzt entweder das Voergehen

von dem Massachusetts Institute of Technology (MIT regel) oder die Stability Proof Rule (SPR

Regel). MIT mit den empirisch besseren Ergebnissen, SPR mit dem mathematischen Beweis

der Stabilität. Beide Wege werden erklärt und mathematisch hergeleitet. Modi�ed MRAC ist

die Kombination aus einem adaptiven Regler und einem PID-Regler, was zu besseren Ergebnis-

sen führt bei plötzlichen Änderungen des Systems. In dieser Arbeit wird ein Modi�ed Model

Reference Adaptive Controller für die Höhenregelung eines Quadrocopters aufgestellt, imple-

mentiert und evaluiert. Als Anforderung für die Implementation gilt: Die Wiederherstellung

beziehungsweise Beibehaltung eines Flugverhaltens und die höhentechnische Kompensation

von plötzlichen Systemänderungen in Bezug auf die Masse. Als Referenzsystem wird ein Sys-

tem zweiter Ordnung gewählt.
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Introduction 1

1 Introduction

The advantage of an open-loop controller over a closed loop feedback controller is the capability

to regulate not well-known systems, or systems whose parameters are not set as needed for a

good open-loop controller. But even a controller with feedback has its limitations as to changing

the environment or system settings. Even if its technical means are capable of handling these

parameter changes, the controller will mostly not be able to handle them while maintaining

the same characteristics the system had prior to this change. The Julius Maximilian Univer-

sity of Würzburg is doing research on a defense system against micro drones, called MIDRAS.

Figure 1.1: Animation of the principle of the MIDRAS project.
Source: University of Würzburg

This system uses drones carrying a

net in order to catch smaller drones,

as shown in 1.1. Varying charac-

teristics display a problem of the

system. The decreased mass, the

force for deceleration of the caught

drones, or even a caught drone still

having on its motors apply extra

force to the net. This short-term

forces could be �ve times greater

than the normal gravity force the drones face. In the long-term they should be able to han-

dle carrying up to 70% of the initial mass of the system. So even if the normal control would be

able to somehow handle this non-negligible change of system, the �ight characteristics would

not be anywhere near as they would without it. With a sudden change, but one that is schedu-

lable, it is possible to change the prede�ned control parameters for a �ight without payload to

a �ight with payload. This is possible if the payload is well known. But with processes like

weight loss of planes due to the kerosene consumption, there was an early need for adaptive
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controllers. Therefore, in the early 1950s, several methods were developed to adapt controllers,

such as the sensitivity rule or the MIT-rule, which will be used and explained in this thesis. In

1958, R. Kalman developed the �rst self-tuning controller which was an optimal LQR with iden-

ti�cation of parameters, but it was not taken seriously due to the lack of high-speed computers

and insu�cient setup of the theory [4] [5]. The crash of the X-15A-3 in 1967 due to a stable but

non-robust adaptive controller led to a delay in further research. It was not until the early 1990s

that NASA and the air force started their research on "recon�gurable �ight-control". Later in the

90s the number of methods for adaptive controllers increased rapidly, described by M. Steinberg

as "an explosion in the number and types of approaches applied to the recon�gurable �ight-

control problem" [19]. Controlling with fuzzy-logic and neural-networks also emerged at this

time. The test �ights with these controllers faced several uncertainties; the most advanced was

the Lyapunov-based proof of stability, which today is still the concept of proof of stability [19]

[5].

There have been several approaches to take an adaptive controller as a controller for a Un-

manned Aerial Vehicle (UAV).

In "Modi�ed Model Reference Adaptive Control of UAV with Wing Damage" by Yahui Xiao,

Yufei Fu, Chengfu Wu and Pengyuan Shao an Modi�ed Model Reference Adaptive Controller

(M-MRAC) was implemented for stabilizing a Quadrocopter when taking wing damage, simu-

lated by the loss of 40% of the thrust on one side. This was done only by simulation and no

real system. The M-MRAC was able to stabilize the damaged quadrocopter, but not in a prac-

tical relevant amount of time of nearly 20 seconds. As further research, the �ight dynamics

of the quadrocopter after damage with and without system change was suggested, to ful�ll an

emergency landing[20].

Zachary Thompson Dydek implements in "Adaptive Control of Unmanned Aerial Systems" a

Modi�ed Reference Adaptive Controller (MRAC) for a quadrocopter attitude control. One test

setup is the sudden removal of a tip of one rotor. Due to practical and stability reasons the im-

plementation uses a deadband in which the adaptions is deactivated when the error between

reference model and real value is to small. So the adaptation only takes place with big enough

change to the system. This is not done in the implementation in this thesis. Furthermore, a com-

parison of a so-scalled CombinedModel Reference Controller (CMRAC), which is a combination

of the direct and indirect, model identifying, approach of the MRAC, to normal MRAC is done
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with normal �ight behavior. As system change time delay of the loops of di�erent duration are

taken[3].

In "Adaptive Control of Unmanned Aerial Vehicles: Theory and Flight Tests" by Suresh K.

Kannan, Girish Vinayak Chowdhary, and Eric N. Johnson an MRAC was implemented on a real

helicopter and showed a good behavior when �ying autonomously. With the altitude control,

there could be seen non-negligible oscillations of up to more then 3 meters. This was due to

the limitations of the original controller. The behavior was recognized and even described as

"expected" but neglected due to other priorities of the implementation. Therefore, for the im-

plementation in this thesis, where the altitude is the main focus, an approach which does not

rely on inner limitations of the controller is applied [8].
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2 Basics of Control-Theory

In this chapter two basic concepts of control theorywill be explained, which are essential for this

thesis. The PID controller, as the chosen controller for all implementations and evaluations, and

the stability theorem of Lyapunov, as it is taken as proof for the stability of adaptive approaches.

With the PID controller, the cascaded controller will be explained, too. Also the characterization

of transfer systems is explained, to be able to compare di�erent systems in this thesis.

2.1 PID Controller

A Proportional-Integral-Derivative-controller (PID-controller) is a closed loop feedback con-

troller that aims to eliminate the error between the feedback and control signal. Figure 2.1

shows the block schema of the basic system.

Figure 2.1: Block schema of basic PID-controller
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The generalized time domain functions are:

P (t) = kp · e(t) (2.1)

I(t) = ki ·
Z t

0

e(t)dt (2.2)

D(t) = kd · ˙e(t) (2.3)

P represents the current error, I the past error and D the prediction of the future error. e(t),

which is the error between the command uc and the output y, is going to three separate blocks

representing P, I and D. The transfer functions in the frequency domain are:

P (s) = kp (2.4)

I(s) =
ki
s

(2.5)

D(s) = kd · s (2.6)

In Figure 2.1 the P, I and D block can be summed up by one block called Regulator. The transfer

function of this Regulator Block G(s) is:

G(s) = P (s) + I(s) +D(s) (2.7)

Plant is thewhole process from amathematical controller output u to the real output y. Speak-

ing for the real system, knowing y for the feedback implicates some sort of measurement, be-

cause plant is the real world process. Thus plant is the part where the real world disturbance

comes into the system. However, this is not shown due to the abstraction process.

This all leads to the general closed loop feedback controller design, seen in Figure 2.2, which is

taken as basis for all controllers in this thesis. For better visualization, the Regulator and Plant

are sometimes combined as block Process. [6]

A development of the closed loop feedback controller is the cascaded controller. It contains an

inner and outer loop. The inner loop controls the value of the secondary process. The outer

loop the value of the primary process. It is necessary, that these two processes correlate and

the change of the secondary output leads to a change of the primary output in a �xed relation.
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Figure 2.2: Block schema of a general closed loop feedback controller

The corresponding block schema can be seen in Figure 2.3. This structure requires two feedback

channels. One of the value after the secondary process and one after the primary process [9].

Figure 2.3: Block schema of a cascaded closed loop controller

A simpli�ed option of this general cascaded controller is the approach of having only one pro-

cess, so there is only one output. Therefore the feedback for the inner controller is the derivation

of the output of the process. So in the general model the primary and secondary process are

summarized, with the primary process being an integration. Practically this means, that the

outer controller gives the desired change of the output, like a velocity, and the inner controller

tries to match the change of the output to the desired change and not controlling the speci�c

output itself. The two feedbacks can be either realized by two di�erent measurements, one of

the value and one of its change (like altitude and vertical velocity), or by only one measurement

of the value and the mathematical derivation of it. This shown in Figure 2.4.

Figure 2.4: Block schema of cascaded closed loop controller with one process
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2.2 Characterization

To characterize di�erent transfer systems, which can be a transfer function or a whole system

with one input and output, three values are taken as characteristics. Rise time, settle time and

overshoot. Therefore a system gets an input change from a start value to a new desired value

without any transition. The rise time is de�ned as the time from the point where the input

changed, to the time the output �rst reaches 95% of the desired value. The settle time is the time

from the start to the �rst point where the output does not leave the range between 95% and 105%

of the desired value. The Overshoot is the percentage of the di�erence between the maximum

reached value and the desired value (or minimum to the desired when the desired value is under

the start value) to the di�erence of the desired value to the start value. Most likely is a step

response from 0 to 1.

Figure 2.5: Visualisation of the characteristics of a transfer system
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2.3 The Stability Theorem of Lyapunov

Consider a system:

ẋ(t) = f(x, t) and x(t0) = x0 x 2 Rn (2.8)

Unlike asymptotic stability, which is de�ned by a point x↵ being asymptotic stable if the point

itself is stable and locally attractive, meaning at t0 there exists ✓(t0) so that:

��x(to)
�� < ✓ =) lim

t!1
x(t) = x↵ (2.9)

the stability in sense of Lyapunov is weaker, saying a point x↵ is stable at t = t0 if for any ✏ > 0

there is a ✓(t, ✏) such that:

��x(to)
�� < ✓ =)

��x(t)
�� < ✏ 8t > t0 (2.10)

This means that for every value ✏, there is another value ✓, fromwhich, once reached,kxk cannot

become ✏ or larger.

Now the direct, also called second, method of Lyapunov is introduced. It provides theorems

about a continuous function V (x, t). The method provides criteria when the V in sense of Lya-

punov is locally stable, uniformly locally stable, uniformly locally asymptotically stable and

globally uniformly asymptotically stable. Only the second will be needed in this thesis. Lya-

punov’s criteria for that is:

"If V (x, t) is locally positive de�nite and decrescent, and V̇ (x, t)  0 locally in x and for all t, then

the origin of the system is uniformly locally stable (in the sense of Lyapunov) ".[12]
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3 Adaptive Controllers

Prof. Karl Johan Åström de�nes an adaptive controller as follows[16]:

An adaptive controller is a controller with adjustable parameters and a mechanism of

adjusting the parameters.

So there are three parts to be considered, the sort of controller, which parameters to be adap-

tively updated and the sort of mechanism that leads to adaptation of the parameters. Because

the di�erent mechanisms of the adaptations are designed to work with all kinds of controllers,

as long as they provide the right adjustable parameter, like a gain as the last step, the di�erent

mechanisms will be the subject of the further thesis and not the di�erent kinds of controllers.

The PID-controller was explained in Chapter 2.1 because of its use in the practical implemen-

tation. The following approaches will be treated because Åström, Sastry and Bodson claim

them as the common adaptive schemata, although Sastry and Bodson list the stochastic control

approach(3.6) as common and Åström does not and Åström lists self-oscillating adaptive sys-

tems(3.3), which Sastry and Bodson do not list. Moreover, Åström lists high-gain control (3.2)

and Sastry and Bodson only list it as a schema of the model-reference control itself. For the sake

of completeness, and as the self-oscillating adaptive systems(3.3) is a developed on high-gain

control (3.2) they are all listed separately here.

3.1 Gain Scheduling

The most basic and intuitive idea of adaptive control is implemented in gain scheduling. It

adapts parameters of the regulator according to chosen conditions. This could be measured by

parameters such as the level of kerosene in a tank, altitude or temperature. Though, it can be

any operative condition. The only requirement is that these measured parameters correlate with



Adaptive Controllers 10

the change of dynamics of the system. The higher the correlation, the better the possible adap-

tation becomes. This method can be as fast as the change of the measured parameters, and for

Figure 3.1: Block schema of the gain scheduling system with reference to [16]

well-known correlations this is a popular method for adaptive controllers. The disadvantage is

that there is no real learning, as the process from the operating condition to the adapted regu-

lator parameters itself is an open-loop controller, so it cannot handle changes of the correlation

between system dynamics and the measured parameters. Due to this behavior as a result of

the open-loop structure, it is controversial whether gain scheduling even belongs to adaptive

controllers. However, it can be classi�ed as an adaptive controller when taking the de�nition at

the begin of this chapter into consideration [18] [16].

3.2 High-Gain Control

Figure 3.2: Block schema of the high-gain control method with reference to [16]

High-gain control is a second quite simple adaptive controller. The input of the adaptive

mechanism itself is a reference model, thus Systry and Bodson [18] describe it as a section of

the MRAC. Åström [16] does not, as in his opinion the high-gain control approach only uses the
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reference model as input and thus it does not belong to the MRAC approach.

The idea is to set the regulator as a high-gain ampli�cation for the following reasons: With the

given model on the right, the transfer function of the plant considered as P (s), and the regulator

transfer function as gain k, the transfer function G(s) from ym to y is

G(s) =
k · P (s)

1 + k · P (s)

where, without further mathematical proof, it can be seen that with a high gain k the transfer

function becomes

lim
k!1

G(s) = 1

which leads to y = ym, the aim of this adaptive controller. The whole system is very insensitive

to changes in the dynamics because of the very high gain. However, there are some downsides

to this method.

First, it is not possible to run this approach without oscillations. In a real system the plant is

not able to handle an in�nite u without oscillations. In this case u would be watched by a limit

cycle detector. This stops the increment of the gain when reaching a critical cycle of u for the

real setup and it stops the decreasement if this cycle exceeds a certain level. The limit cycle

detection is most likely to be a recti�er and low-pass �lter.

Second, because of noise in the frequency-band it leads to a decrease in the gain even if it is not

near the critical value.

Third, the reference input may lead to saturation of the system because of the high gain.

Fourth, the saturation may mask oscillations of the limit cycle, which lets the gain reach values

above the limit that causes instability.

Although 3. and 4. may seem easy to handle practically, 4. was the reason an experimental

X-15 aircraft crashed. It was found that it had saturation issues due the high-gain control. The

saturation left instabilities undetected and led to the crash [10][18].

3.3 Self-Oscillating Adaptive Systems

The self-oscillating adaptive systems (SOAS) build on the same idea as the high-gain control

3.2 but the gain is not automatically set to be as high as possible. This is implemented by a
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Figure 3.3: Block schema of the self-oscillating adaptive systems with reference to [16]

relay that leads to maximum cycle oscillations. The system will always be excited because of

these oscillations. The frequency can be adjusted by a lead-lag �lter, which is put right after the

error calculation, and the amplitude can be in- or decreased by the value relay switching on or

o�. Like the high-gain method, the behavior of a SOAP is also not sensitive to changes in the

dynamics of the system because of the high gain. Although this is a well-known method, it is

not considered to be implemented in aircraft, because the limit cycle oscillations will be always

noticed by pilots. For applications where noticeable oscillations are acceptable, this is a robust

approach. The problem of oscillations can be improved by creating a second loop, where the

gain of the relay is adaptively customized in consideration of e. Another method is to adapt the

limit cycle [16].

3.4 Model Reference Adaptive Control

Figure 3.4: Block schema of the model reference adaptive controller with reference to [18]
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The Model Reference Adaptive Control (MRAC) is an approach with a desired behavior of the

real system, set by a reference model, which can represent an optimal model as well as one that

is only corresponding to certain parameters. The aim of MRAC is the minimization of the error

e de�ned as:

e = y � yref

To accomplish this criterion there are certain methods like the MIT-rule, which belong to the

Gradient Approaches, or the SPR-method that is based on the Stability Theory which is based on

the Lyapunov’s Second Theorem. In 4.2 both will be further explained. MRAC (sometimes called

MRAS as Model Reference Adaptive System) can be thought of as two loops, an inner loop that

presents the normal feedback control and an outer loop that adapts the regulator parameter to

minimize e. Hence the outer loop can be seen as the regulator itself.

3.4.1 MIT-Rule

The MIT-rule is basically the so-called Gradient Approach, but because most of the research

and work was carried out at the instrumentation laboratory at MIT (Massachusetts Institute of

Technology), it is nowadays called the MIT-rule.

First, there is the de�nition of a cost function J(✓) as follows:

J(✓) =
1

2
· e2 (3.1)

e, as shown in Figure 3.4, is the error between the reference model output and the reality. ✓

is the adjustable parameter. Because the cost function has to be minimized as the aim of the

controller, the change of ✓, ✓̇, has to be kept in the negative gradient of J .

✓̇ = ��
�J

�✓
(3.2)

� is therefore a positive quantity that indicates the adaptation gain. Taking Equation 3.1 into

Equation 3.2:

✓̇ = �� · e�e
�✓

(3.3)

It has to be considered that ✓ could be a vector of parameters and not just one. Then �e
�✓ becomes

the gradient of the parameters. J(✓) could theoretically be chosen arbitrarily, although there
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are some common equations, which will be not further explained, with Equation 3.1 being the

most common one.

For our requirements, building a basic adaption, like a feedforward gain system, the error is

described as:

e = y � yref = uc · ✓ ·G(p)� uc✓
0 ·G(p) (3.4)

withG(s) being the transfer function of controller and plant, p being the di�erentiation operator
d
dt , ✓

0 being a known gain for G(s) of the model and uc being the controller input. The control

law is

u(t) = ✓ · uc(t) (3.5)

So the criterion of minimizing e is reached with getting the gain of the real controller becoming

the gain of the adaptive model ✓ = ✓0. For this assumption �e
�✓ becomes the following:

�e

�✓
= G(p) · uc (3.6)

and G(p) · uc can be easily described as

G(p) · uc = yref/✓
0 (3.7)

The MIT rule using Equation 3.3 then gives

✓̇ = ��0 · e · yref/✓0 (3.8)

This basic approach for only feed forward gain can be easily generalized by setting ✓0 = 1,

which leads to:

✓̇ = ��0 · e · yref (3.9)

which is the common known basic system description for MRAC with MIT-rule [7][16].

The resulting block-diagram, shown in Figure 3.5, shows the characteristic parallel schema

because of two parallel loops. One is G(s) itself because it is the transfer function for the con-

troller and plant with a feedback loop, and the outer adaptive loop of adjusting ✓. There is also

a so-called series schema, one implementation was introduced with the high-gain control in 3.2,

which had a reference model and then a loop for adjusting the controller. This schema does not
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Figure 3.5: Block diagram of the mathematical model of the MIT rule with reference to [7]

consist of two loops, ignoring the possibility of the reference model consisting of a loop itself.

That is why Åström[16] does not count it as MRAC, because for him MRAC always represents

a parallel schema, although in Sastry and Bodson[18] this is not the case.

As a very basic rule, the MIT-rule faces some problems. A main problem is that the stability can-

not be proven absolutely. It can only be proven as stable with uref and � being not "su�ciently

large"[16]. This is a well-known problem of large gains, leading to instability and/or oscilla-

tions [7]. However, it is still the most used approach with MRAC. There is a development of the

MIT-rule, namely the modi�ed MIT-rule, which normalizes the algorithm. This overcomes the

problem of instability with large inputs because the gain ✓ depends on the e · uref . It sets up ✓̇

as follows:

✓̇ =
�� · e · �
↵ + �2

(3.10)

and � = uref/✓0 so with ✓0 simpli�ed as 1 it becomes

✓̇ =
�� · e · uref

↵ + u2
ref

(3.11)

↵ is introduced to overcome the problem of dividing by 0 when � is small.[7]
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3.4.2 SPR rule with Lyapunov stability

The second major approach of designing the MRAC adaption mechanism is the so-called SPR

(Stability Proof Rule) which is proven with Lyapunov stability. Therefore, e is written just like

with the MIT-rule in Equation 3.4 as:

e = y � yref = uc · ✓ ·G(s)� uc✓
0 ·G(s) = G(s)(✓ � ✓0) · uc (3.12)

Now the state space model of G is introduced. The general state space model of a system is

ẋ = Ax+Bu y = Cx (3.13)

Putting this model of G to Equation 3.12, leads to a relation between ✓ and e of:

ẋ = Ax+B(✓ � ✓0)uc e = Cx (3.14)

If the homogeneous system ẋ is stable in purpose of the asymptotical stability there are positive

de�nite matrices P and Q with

ATP + PA = �Q (3.15)

being solved. As a possible solution of the Lyapunov function the function used by Åström[16]

is used, which is:

V = 0.5(�xTPx+ (✓ � ✓0)2) (3.16)

Realizing �, P and ✓0 being constant over time, the derivation of V becomes

V̇ = 0.5 · �(ẋTPx+ xTPẋ) + (✓ � ✓0) · ✓̇ (3.17)

Using the ẋ and the resulting ẋTof Equation 3.14 in the Equation 3.17 considering Equation 3.15

V̇ becomes:

V̇ = �� · 0.5 · xTQx+ (✓ � ✓0)(✓̇ + �ucB
TPx) (3.18)

Searching for a law prohibiting the derivation of the Lyapunov function becoming positive, the

adjustment law

✓̇ = ��ucB
TPx (3.19)
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can be found under the condition of x not being 0. Now it is assumed the Lyapunov function

could be chosen, such that

BTP = C (3.20)

with C being the output matrix of the system. Than e in Equation 3.14 leads to

BTPx = Cx = e (3.21)

Now the adjustment rule can be written as

✓̇ = ��uce (3.22)

It is remarkable that the resulting adaption law of the MIT rule and SPR rule looking nearly the

Figure 3.6: Block diagram of the mathematical model of the SPR rule with reference to [16]

same (see Equation 3.23)and one being fully proven stable and the other not. Also the SPR rule

also only works for much smaller classes of input than MIT. The MIT rule provides with less

gain than SPR a better result of following the reference model than SPR.[15]

✓̇MIT = ��yrefe ✓̇SPR = ��uce (3.23)

With the simulation-setup of a quadrocopter explained in chapter 4 with the exact same setup

for MIT and SPR , which only di�er in one multiplying uc and one yref in the adjustment rule,

the system was stable with MIT at a � of 12 and crashed with one at 13. SPR, on the other hand,

could handle a � up to 32 and crashed with 33. Fig 3.7 shows that even with the SPR system
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handling the high gain, the error between real system and reference system is signi�cantly larger

than MIT, although it is oscillating. SPR put to a gain of 12, just like MIT, still has a signi�cantly

larger error at the point where the simulated UAV changes its velocity (40 s). In this setup, SPR

always has the higher error than MIT, even at a gain of 4 which from the tested natural numbers

is the gain with the least error. Therefore, the MIT rule is chosen in this thesis for the use in

MRAC over SPR.
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Figure 3.7: Error between velocity of the reference model and real velocity. At 40s the quadrocopter rises.

3.4.3 Modified MRAC

Figure 3.8 shows how MRACs with the MIT-rule of di�erent gains minimize the error between

the reference model and reality. It is conspicuous that all gains seem unable to handle the im-

mediate error at 40s, where the altitude is increased. The internal integration cannot adapt with

the required speed to avoid that �rst peak, or even see noticeable di�erences between the di�er-

ent gains. Therefore, an expansion of the system for more directness is needed. One expansion

ful�lling this aim is the so-called Modi�ed Model Reference Adaptive Regulator (M-MRAC). It

is a combination of conventional MRAC and a PID-controller.



Adaptive Controllers 19

Figure 3.8: Error between reference velocity and real with MRAC with MIT rule adapted with gains from 4 to 12.
The height was increased at 40 s which leads to acceleration and deceleration.

Thus, controller output u is no longer only described as

u = ✓G(s) · (uc � y) (3.24)

with ✓ being adapted by the MIT-rule with the reference model. With M-MRAC u is described

as

u = ✓G(s) · (uc � y) + (kp · e+ ki ·
Z

edt+ kd · ė) (3.25)

meaning a PID-control of e was added. This can also be done with MRAC based on MIT as

well as the ones based on SPR. The values of this PID can be estimated with the Ziegler-Nichols

tuning method if the system is open-loop stable. If the system is unstable, another PID-tuning

method may be required. [14][13] The comparison of MRAC and M-MRAC is done in Chapter

5.1.
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3.5 Self-tuning Regulator and Model Identification

Adaptive Controller

Self-tuning regulators and model identi�cation adaptive controllers essentially perform the

same function. In MIAC with the control signal u and the output y a model is estimated. This is

given together with the uncertainty of the identi�cation to the adjustment mechanism just like

MRAC.

Figure 3.9: Block schema of the self-tuning regulator with reference to [16]

A self-tuning regulator (STR) also uses u and y for an estimation; however, it does not really

estimate a model but "plant parameters", which are given to a design, where the regulator pa-

rameters are calculated with these plant parameters.[16] Uncertainty has to be included in the

Figure 3.10: Block schema of MIAC regulator with reference to [11]

calculation.[11] Any system-identi�cation-method can be used, and there is no real standard.

Common methods are the least squares method, maximum likelihood and extended Kalman �l-

tering. Most of the identi�cations can be described as pole placement designs, so the optimal



Adaptive Controllers 21

design is found through a variation of poles of the transfer function.[18][16] The direct iden-

ti�cation of the transfer function parameters is "the most straightforward approach"[16]. In

di�erence to the MIAC it is not necessarily the only correct way. It could only estimate single

parameters of the system, and then like in gain scheduling 3.1 only adapt in regard to this pa-

rameter. In contrast to MIAC the parameters are considered as true, so there are no considered

uncertainties of the calculation. This is called the certainty equivalence principle. [16]

MIACwas introduced in 1958 by R. Kalman, asmentioned in the introduction of this thesis. As

he chose the approach of this method, which rests on identi�cation of the system, the computers

were not potent enough to handle these kinds of algorithms in a justi�able amount of time. [16]

The biggest advantage of MIAC and the self tuning regulator is that they can be applied to

a very wide range of systems and parameter-con�gurations, because the systems do not have

to be known a priori. However, the stability analysis is more di�cult in comparison to other

methods, because of the wide possible variation of the parameters. [18] [16] There are several

ways to solve this problem, such as a given initial transfer function where there is only need for

a small change of the parameters, or the numbers of poles and zeros of the transfer function are

given. All these simpli�cations lead to a better stability analysis, but fewer variations of possible

systems handled by this method.

With this knowledge it is noticeable that MRAC could be considered as highly concertized

SOAS or MIAC, with an uncertainty of the model of 0. To de�ne MIAC as direct or indirect,

�rst there has to be found a de�nition for both. While Sastry and Bodson point out that MRAC

is the direct version of SOAS and SOAS is always indirect[18], Åström and Gregory share the

opinion of a weaker de�nition, of SOAS being able to be indirect and direct without being a

full MRAC.[16][5] Gregory even points out MRACs ability to be indirect, but the de�nition of

an indirect MRAC estimating its model leads to the de�nition of as SOAP or MIAC. Here the

de�nition Åström is taken: direct adaptive controllers update the controller parameter directly,

without �rst calculating a completely new model. This is also the case when the model is only

given in a certain way and to a certain degree and not completely re-estimated but only updated,

not fundamentally continuously, but in discrete time intervals. Indirect adaptive controllers only

adapt indirectly and always include a step of designing in their procedure. Åström does not give

concrete information about where to draw a line between being direct or indirect.[16] Sastry and

Bodson do so by de�ning MRAC as direct and everything being SOAS as indirect.[18]
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3.6 Stochastic Control

Figure 3.11: Block schema of the stochastic control with reference to [18]

Stochastic control is the only non-heuristic but pure theoretically-based method. The system

and environment are described as stochastic models and the aim of this controller is to mini-

mize the expected value of the loss function. The only stochastic problem to be considered as

solvable is the linear quadratic Gaussian problem, which can be used to tune an LQR-controller.

As seen in 3.11, what was assumed as estimator in MIAC 3.5 can still be seen as such, but now

it generates the conditional probability distribution of the state, called the hyperstate, which

usually belongs to an in�nite dimensional vector space, and shows the complexity and the rea-

son why it is a common but a not often used approach. If there is a possible solution for the

minimization the loss function it can be found with the Bellman algorithm, which is based on

dynamic programming. Stochastic control is likely to drive the output to the desired behavior.

If the estimation has uncertainties it will add perturbations which lead to a better estimation

and the future control will be improved.

Figure 3.12: Block schema of the dual adaptive control with reference to [2]
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This leads to the de�nition of the dual control, �rst introduced by Feldbaum in 1960, of the

balance of maintaining good control and small estimation errors. Dual control theory is also

represented partly by MIAC 3.5, because it is able to hand over the accuracy of the identi�cation

to the adjustment mechanism. But that is only one value because MIAC identi�es only one

system. Self tuning regulators do not give estimation accuracy of the parameters by de�nition.

Contrary, stochastic control does so, as it is the nature of a stochastic estimation of state(s). As

seen in Figure 3.12, the dual adaptive control transfers parameters and accuracy to the control

design; stochastic control accomplishes this all in the calculation of the hyperstate which is the

combination of both, hence it is considered to be the prime example of the dual adaptive control

[2][18][16].
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4 Implementation

In this chapter, the requirements to the adaptive controller based on the requirements of the

MIDRAS project are pointed out and on that base the choose and the speci�c implementation

of the M-MRAC is explained. Furthermore two reference models for the M-MRAC are shown

and compared.

4.1 Requirements

Because the design of an M-MRAC is part of MIDRAS-project, the requirements for the simula-

tion and the real system are adapted here to this. The structure for controlling the z-value (which

can be interpreted as altitude and will be called that from now on) is a cascaded loop. A �rst P-

controller runs hat 40Hz for altitude and a second PI controller runs at 200Hz for the resulting de-

manded vertical velocity.

Figure 4.1: Block schema showing the double controller
of the altitude control of MIDRAS

In the future it is considered to make it a

triple controller with a third acceleration con-

troller.

The requirements for the MRAC are:

• Minor optimization of the current second controller, but without endangering robustness

or stability.

• Intercept fast abrupt changes in the system most likely due to an increase of the gravity

force by adding mass.

• No need for changing the current controller, which has limitations.
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This leads to the following implementation:

Because of the �rst requirement, the MRAC is implemented around the inner controller. So as

input of the reference model the output of the outer controller is taken as uc . This leads to the

reference model representing the inner controller and the plant. The second requirement shows

the need for implementing the modi�ed version of MRAC, so M-MRAC, because as shown in

3.4.1, merely a gain adaptation is not able to quickly handle abrupt changes. As input uc is

able to change rapidly, the MIT rule is chosen. Another reason is its good adaption rate. As

the quadrocopter is an unstable system, it could be considered to use SPR because of its proven

stability. The third requirement leads to the adaptive gain ✓ being multiplied by the output of

the second controller and not by the input.

4.2 M-MRAC

With the second controller (PID-controller) seen in the discrete time domain, the calculations

are linear

e = uinnerloop � y (4.1)

uouterloop = en · kp +
nX

i=1

ei · dt+ (en � en�1)/dt (4.2)

with n being the time steps since start of the controller and dt being the time since the last step.

In this case it does not matter if we write

e✓ = (uinnerloop � y) · ✓ (4.3)

and

uouterloop = e✓n · kp +
nX

i=1

e✓i · dt+ (e✓n � e✓n�1)/dt (4.4)

or

uouterloop = ✓ · (e✓n · kp +
nX

i=1

e✓i · dt+ (e✓n � e✓n�1)/dt) (4.5)

As the versions are mathematically indistinguishable, the second version is chosen for practical

reasons, because in the real system there will be limitations for all characteristics and behaviors

of the controller. This could lead to restrictions in the adaptation. The adaptation will have its



Implementation 26

own restriction rules, which are not applied in the simulation, but to the real system for safety

reasons.

For the simulation the software MATLAB/Simulink was used with the aerospace toolbox, which

provides a quadrocopter simulation. It uses the Parrot Mambo drone, a small-sized drone with a

weight of 63 g. The real system test will be �own on small drones of 194 g. It would be possible

to identify the plant transfer function of the real quadrocopter, but the simulation provides an

in-depth simulation of plant, environment characteristics, sensor simulation and the in�uence of

the regulation of the other degrees of freedom. Default altitude control of the toolbox is a simple

PD controller, with the D-part not calculating the derivation of the altitude. On the real system,

the vertical velocity is taken from the integration of an accelerometer, which is also provided

by the simulation. The default structure of the simulation is replaced by the cascaded control

(P and PI) architecture of the real system. As the simulation uses a kick-start the motors run at

full speed for a certain amount of time. There are two take-o� helpers, one overwriting output

signal with the kick-start and one setting the real velocity as reference velocity for overcoming

the adaption mechanism to integrate an error, without having an impact on the system, while

the kick-start is active. The take-o� helper works deeply in the model, so could not be shut

o�, but there is no need for it, as we will not analyze the start but mid-�ight. The resulting

MATLAB/Simulink workspace can be seen in Figure 9.1. The C++ code can be seen in the

appendix.

4.3 Design of the Reference-Model

Because of the special requirements of the MIDRAS project seen in Chapter 1, the criterion is

to minimize error e between the system without extra forces of the net, due to extra mass and

absorption of the velocity of caught drones, and the system with these extra forces. Based on

this approach, the system of the drone without the later attached weight is taken as reference

system. A function with one zero and two poles is chosen as transfer function so it represents

a transfer function without many perturbations. One zero and two poles lead to less overshoot

and shorter settling time than a two-zero one-pole system (PID-controller). A second order

system is a commonly known transfer function for simulating an abstracted optimal drone.[17]

According to MATLAB, the transfer function of the real system was more likely to have a zero,
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due to unknown factors. The transfer function found by the MATLAB Identi�cation toolbox for

one zero and two poles is G1(s), which is rated with an accuracy of 89.34%.

G1(s) =
2.995 · s+ 55.78

s2 + 8.042 · s+ 55.78

Because of the desire to improve the performance of the default system, a second function, a

two-pole null-zero function G20(s) with an accuracy of 88.72%, was calculated.

G20(s) =
45.69

s2 + 6.65 · s+ 45.69

G20(s) has an overshoot of 15.44%, rise time of 0.33 s and settle time of 0.77 s. G20(s)wasmodi�ed

by hand, so it now had an overshoot of less than 0.1% and therefore the same rise and settle time

of 0.42s. This function is called G2(s).

G2(s) =
90

s2 + 17 · s+ 90

The accuracy of MATLAB-system-identi�cation is de�ned as follows:

� = 100 · ( ky � ŷk��y �mean(y)
��)

with � as accuracy, y as system output and ŷ as the output of the transfer function. Because

the reference system of an adaptive controller neither has to be the exact same as the original

system, nor does it have to be necessarily optimal, but could even be considered to impair the

system response or not �t the original system, the impact of the mathematics on the accuracy

with which MATLAB rates the systems will not be discussed. It is su�cient that the found

transfer function G1(s), when considering the requirements of 4.1, is an improvement of the

system, and has characteristics that seem feasible for the drone.

G1(s) originally was
2.995 · s+ 55.78

s2 + 8.042 · s+ 55.77

butwith that, an in�nite lasting input of 1would not lead to the output 1 but to the output 1.0018.

Therefore the 55.77 in denominator was changed to 55.78, because only when the constant part

of denominator and nominator are the same, an input of 1 for an in�nite amount of time will



Implementation 28

lead to an output of 1. So it was set 0.01 higher, to solve this desired characteristic of the real

system. And as pointed out, there is no need to take the exact same model as calculated by

MATLAB, as long as it solves the requirements it is made for.

The result of G1(s) applied to the value of the velocity desired by the outer controller can be

seen in Figure 4.2, and of G2(s) in Figure 4.3.
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The reference output ofG1(s) compared to the real output is a little bit faster and with fewer

perturbations. So with an adaptive controller this should have a stabilizing e�ect on the real

output and increase its reaction time somewhat, but also keep the overshoot, with the danger

of even increasing it. G2(s) has nearly no perturbations, starts quicker but becomes slightly

slower halfway. However, it does not overshoot. To characterize the transfer function, rather

than taking the time-continuously calculated characteristics, it is more reasonable to take the

characteristics of the time-discrete implementation, which will also be run later on the real

system. This implementation in C++, which can be seen in Chapter 9, shows the following

characteristics of the transfer function:

Characteristics of the reference models G1(s), G2(s) and the real system for a step response

from 0 to 1:

rise time settling time overshoot

G1(s) 0.24s 0.645s 16.1991 %

G2(s) 0.42s 0.42s 0.0008 %

real system 0.30s 1.4s 16.972%

Finding the characteristics of the real system is more complex because of the input velocity

and real velocity not being really 0 at the start of the rise.

For taking the transfer function from the frequency domain to the discrete domain,G1(s)will

be implemented as a combination of P, I and D controllers.

Figure 4.4: Block schema of the numerator side of the
function Gg(s)

Therefore the general function Gg(s) of the

form

Gg(s) =
a · s+ b

s2 + c1 · s+ c2

will be discussed. The numerator side can be

seen as a summation of a D-controller with

gain a, and a P-controller with gain b like

shown in Figure 4.4. For reasons of stability, the derivation in the c++ implementation in Chap-

ter 9 is averaged over the last 10 values which are the last 50 milliseconds with the code running

at 200Hz.
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1/(s2 + c1 · s+ c2) can be considered as a double integration with a feedback loop ampli�ed

with the gain c2. Furthermore, the value of the �rst integral-controller is ampli�ed by the factor

c1 and added to the feedback.

Figure 4.5: Block schema of the denominator side of the
function Gg(s)

This is illustrated in Figure 4.5. To get the

multiplication of these two parts, they are

connected in series resulting in Y↵(s) =

U�(s). As the commutative law applies to

the multiplication of two functions of the fre-

quency domain, it does not matter if Y↵(s) =

U�(s) or U↵(s) = Y�(s). This is the basis for

the implementation in C++ in 9 .

4.4 Practical Issues

MRACwith theMIT rule works best in a pure positive (excluding 0) system. A zero-symmetrical

system is also possible, but has some issues. For example, if a reference system has the value 0,

the ✓-gain of the adaptation stays the same, whatever the real value varies or not, because the

error is multiplied with the value of the reference system. Consequently, when the real value

rises linearly from 1 to 3, but the reference system and the desired value sink linearly from 1 to

-1, the error ewill increase linearly. However, ✓, because of the multiplication (see Equation 3.9),

does not rise linearly and even stops rising when the reference value reaches exact 0. Because a

controller will sink further than 0, this does not lead to failure of the MRAC, but the adaptation

is not optimal. With the MIDRAS-copters, the range of velocity is theoretically from �1 to

+1 and yout from to controller from �50 to +50. The unit of the output will not be discussed,

as it has no consequence for the explanation and therefore implementation. The output 0 stands

for the amount of throttle, which leads to hovering with no vertical velocity. Considering this,

the MRAC works �ne with the default setup. But as soon as the system changes, 0 is not the

hovering throttle anymore. Normally, this is not a problem, because ✓ is the gain for the input,

where 0m/s is still the symmetric middle, even with a changed system. However, because ✓ is
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taken as the gain of the output of the controller and not the input (see requirement 3 in 4.1), this

then becomes a problem.

A quick example. Consider a drone with an attached weight, which hovers at a output of 20.

When the weight is detached, vreal becomes positive and vref negative. This leads to e (with

e = vreal�vref ) being positive, therefore e ·Vref becomes negative and because ✓̇ = e ·vref ·��,

✓ will increase. The increasing ✓ multiplied with the desired velocity smaller than zero will lead

to a lower desired velocity and therefore to a faster decreasing u. But multiplied to the (still)

positive output, because it started at 20 and not 0, this becomes bigger, which works against the

desired change of letting the drone sink. Practically, this leads to the system oscillating stronger

and stronger. To overcome this, the output is no longer considered to have a range from�50 to

+50 but from 0 to 100. So with a too fast system the gain should decrease, and with a too slow

system it should increase. Therefore e ·vref is just changed to e ·
��vref

��, since with a time-discrete

PID-controllerGPID(a·x) = a·GPID(x) and therefore the same behavior is kept as multiplying

by the input of a linear system.

Alternatively the maximum possible sink rate of �9.81m
s2 could be de�ned as velocity 0, for the

step of the adaptation, and therefore the whole vertical velocity becoming positive. With the

limitation of the �rst controller, it would be enough to de�ne the minimum limit as 0.
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5 Evaluation

In this chapter, the M-MRAC is tested on simulated and real drones. Therefore the altitude, ver-

tical velocity and vertical acceleration of several �ight maneuvers in combination with changes

of system parameters and changes of controller parameters are evaluated.

5.1 Simulation

For all the simulations � = 7 and for M-MRAC kp = 4, ki = 2 and kd = 0, 3 were chosen.

5.1.1 Flight Dynamics

The �rst evaluation is the one of the behavior of the simulation without changes to the system,

with and without M-MRACwith MIT rule, for a change of the altitude from the reference 1.50m

to 1.90m.

Figure 5.1 shows the altitude with and without M-MRAC. The characteristics of rise and set-

tling time and overshoot are not much di�erent. It can be seen that the system with M-MRAC

has less oscillation because the reference system of the velocity is much smoother than the real

system. This applies to G1(s) and G2(s) and is just as expected because in this case, the �rst

controller is the restricting part. Therefore the normal system, as well as both M-MRACs, can

easily follow the desired altitude given by the �rst controller, but the M-MRACs can pursue this

without as many perturbations as the default system.

In the next simulation, seen in Figure 5.2, the kp of the �rst controller has risen from 0.5 to

2 which leads to a high overshoot and oscillation of the inner controller - the parameters of

which were not designed for this quick change. Now it becomes obvious that the M-MRAC

is stabilizing the system by adapting the PI controller, which is parameterized for much slower

changes. It is still not changing the rise time, although now overshoot and settle time are clearly
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Figure 5.1: Results of the simulation of rising to 1.90m from 1.50m with and without M-MRAC G1(s) and G2(s)
at the default PID values of the �rst controller

better because of the missing oscillating of the system. M-MRAC is a good way of adjusting

poorly designed controllers, although the results will always be better when using an optimally

designed controller. [1]
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Figure 5.2: Results of the simulation of rising to 1.90m from 1.50m with and without M-MRAC using G1(s) and
G2(s) at the higher PID values of the �rst controller

The comparison of the velocity of the default system toG1(s) can be seen in Figure 5.3 and to

G2(s) in Figure 5.4. It shows that the velocity follows the speci�c reference velocity. This leads

to G1(s) having some oscillation just before reaching 1.90m, just as expected. This clari�es the

oscillation seen in Figure 5.2 just before reaching 1.90m and the faster rise time in comparison

to the use of G2(s). The small perturbations, mainly seen in the velocity of the system with
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MRAC, are not di�erent from the perturbations when the default system is steady at the target

altitude.
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Figure 5.3: Results of the simulation showing the vertical velocity of rising to 1.90m from 1.50m. with and without
M-MRAC using G1(s) at higher PID values of the �rst controller
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Figure 5.4: Results of the simulation showing the vertical velocity of rising to 1.90m from 1.50m with and without
M-MRAC using G2(s) at higher PID values of the �rst controller

In Figure 5.5 the same maneuver is �own with and without M-MRAC using G1(s) and with

a normal and double mass. The corresponding velocities can be seen in Figure 5.6. The second

PID-controller was now tuned, becoming a well parameterized controller without overshoot.
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This was done to prove three points.

First, the adaptation is taking away the oscillation with the double mass system, and allows for

a faster rise and settling time. The double mass system with using M-MRAC reaches midway a

certain altitude 0.09 seconds before the double mass system without M-MRAC. This cannot be

transferred to the rising time (reaching 0.95% of the change), due to the �rst controller slowing

down the desired velocity when approaching the desired altitude to overcome overshoot, while

the double mass system just rushes through and has a non-negligible overshoot. Therefore, with

all three others, the settling time is the rise time, while the systemwith double mass and without

M-MRAC needs 3.00 more seconds before reaching settle time.

Second, at second 41 there is a slight oscillation in the system with normal mass and M-MRAC

which is not noticeable in the system without M-MRAC. The exact oscillation is in the double

mass system with M-MRAC. This is seemingly a characteristic of the reference model. This

shows that the M-MRAC does not necessarily make a system optimal, but only makes it behave

like the reference model. In this simulation, the requirements of the use would decide, if the

faster-rising M-MRAC system or the non-oscillating normal system would be desired. The op-

timal way would be to design a new reference system that is fast and does not oscillate. This

was the intention of G2(s), but for the demonstration of M-MRAC keeping the characteristics

of the reference model, G1(s) was chosen for this simulation.

Third, without mathematical proof, it can be seen that the di�erence between the two M-MRAC

systems is smaller when the altitude is lowered again, although the double mass system without

M-MRAC seems not to have improved its overshoot etc. This is because ✓ has to be integrated,

which needs time and situations where the reference and real system di�er in a noticeable way,

which is not given with the drone staying at 1.50m.

5.1.2 Answer to System Change

The second complex of evaluationwith the simulation is the response to sudden system changes.

In Figure 5.7 a sudden mass increase to the factor 1.5 is shown because the real system is also

tested with approximately 1.5. With M-MRAC using G1(s) the lowest point was 1.472m and

with usingG2(s) 1.469mwith a desired altitude of 1.5m. Without MRAC it was 1.34m. There is

no major di�erence betweenG1(s) andG2(s). The associated velocity can be seen in Figure 5.8.

It will not be possible to prohibit any kind of fall of velocity because there has to be a di�erence
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Figure 5.5: Results of altitude of the simulation of rising to 1.90m from 1.50m with and without M-MRAC using
G1(s) with a mass of 63 grams and 126 grams
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Figure 5.6: Results of velocity of the simulation of rising to 1.90m from 1.50m with and without M-MRAC using
G1(s) with a mass of 63 grams and 126 grams
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for an adaptive controller to adapt. With variation of the parameters of the adaptive controller,

only the peak and return time of the system can be changed.
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Figure 5.7: Results of simulation of holding altitude and suddenly increasing mass to factor 1.5
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Figure 5.8: Results of simulation of the vertical velocity while holding altitude and suddenly increasing mass to
factor 1.5

The next evaluation of the simulation is the suddenmass increment seen in Figure 5.9. It has to

be said that with the actuators reaching their limit, 2.4 is the maximum factor of its own weight

the virtual drone is still capable of �ying with. But even starting at the maximum simulation

height of 5 meters, the system without M-MRAC still crashed with mass increased to factor 2.4.
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Therefore it cannot be said whether it would ever get back to the altitude from where it started

or not. Therefore the second extraction with a factor of only 2.3 is more meaningful. OnlyG1(s)

is shown, due toG2(s) having no visible di�erence in that plot. The same behavior of the drone

with to high mass will be seen with the real system in the next section.
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Figure 5.9: Results of the simulation of holding altitude and suddenly increasing mass to factor 2.3 and 2.4 with
and without M-MRAC

The last evaluation is a short comparison of MRAC and M-MRAC. In chapter 3.4.3 the need

for a modi�ed version of MRAC was pointed out, because of the late response of MRAC due to

the integration of the error. Figure 5.10 shows the same values as in Figure 3.8, but additionally

the MRAC with the gain 4 was modi�ed to an M-MRAC. The modi�ed version like as expected

a quicker response and an overall less error.

Figure 5.10: Error between reference velocity and real with MRAC with MIT rue adapted with gains from 4 to 12.
The height was increased at 40 s which leads to acceleration and deceleration.
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5.2 Real System

Both evaluations, the �ight dynamics and the answer to system changes, are now tested

on the real system. G2(s) is used as the transfer function of the reference system for the

real system, because the simulations showed slightly better results with it than with G1(s).

Figure 5.11: Real system drone with two clamps for mass
increment

The system itself is a small drone devel-

oped by the University of Wuerzburg with

the mass of 194 g, four RS1106 motors from

EMAX and a Cicada-30A-4in1 ESC from Sun-

rise. The micro-processor is a STM32F407VG

from STMicroelectronics and the barometer a

MS5611 from Measurement Specialties. The

altitude is calculated by a Kalman-�ltered

combination of the internal barometer and the

external, optical based, OptiTrack™-system,

which tracks with eight infrared cameras

four infrared-re�ecting balls mounted on the

drone. With the visual information the pose

is calculated. For the mass-increment two

clamps with a mass of 52 g and 120 g are used. They are clipped to the bottom of the quadro-

copter by hand.

5.2.1 Flight Dynamics

The behavior of the velocity when increasing in altitude with and without M-MRAC with a

default mass without change is shown in Figures 5.12 and 5.13. With M-MRAC, the desired

velocity is reached faster but with an overshoot of about 8.3%. A comparison of settle and

rise time with the de�nition introduced in Chapter 4 is not useful, because the system without

M-MRAC never reaches the 0.95% threshold, but has a maximum of 0.94m/s with a desired

velocity of 1.00m/s. Therefore, the threshold for the de�nition of the rise and settle time is set

to 90%. As the desired velocity has at every point a change of 6= 1, the starting point for the

measurement of rise and settle time is set to the point where the desired velocity starts to rise.
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With this de�nition, the system without M-MRAC has a rise and settle time of 0.28 s and with

M-MRAC 0.17 s. This speaks for a much higher acceleration. The acceleration can be seen in

Figure 5.14. It was lowpass-�ltered with a passband frequency of 20Hz to �lter micro vibrations.

The acceleration was not measured but mathematically created a posteriori out of the velocity

data. There is no limit implemented for the acceleration, which would be passed over by the

M-MRAC implementation: the system without M-MRAC would have the possibility to reach

the same accelerations. When rising, the acceleration of the system with M-MRAC is 1.9 times

bigger compared to the systemwithout. When sinking it is only factor 1.2 lower. Taking the two

sinking velocities of -11.4 m
s2 and -13.3 m

s2 into account, it should be clear that the mathematical

calculation of acceleration out ofmeasured velocity has some bias and/or uncertainty. Otherwise

the drone would sink faster than it would only by gravity, which is not possible, because the

drone does not have any reverse thrust.
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Figure 5.12: Velocity of the real quadrocopter without using M-MRAC when rising altitude
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Figure 5.13: Velocity of the real quadrocopter with using M-MRAC when rising altitude
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5.2.2 Answer to System Change

Figure 5.15 shows the behavior of the quadrocopter with and without using M-MRACwhen 27%

of the weight of the drone is attached with a clip. The short rise at the beginning is due to the

method of attaching manually a clip, which leads to a short push. From the altitude 0 just after

attaching the clip the system without adaptation has a rise time of 3.71 s, and a settle time of

11.8 s, with the lowest point at 0.283m below the starting point and a overshoot of 16.7%. The

system with M-MRAC has a rise time of 1.12 s, a settle time of 2.92 s, the lowest point at 0.197m

below the starting point and an overshoot of 13.3%.
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Figure 5.15: Results of the real quadrocopter of holding altitude and suddenly increasing mass to factor 1.27 with
and without M-MRAC

Figure 5.16 shows the behavior of the drone when increasing the mass to factor 1.62. The

system without M-MRAC touches the ground, starting from the maximum possible height of

the experimental setup of 2 meters. Even when it touches the ground, it stays there, not able to

return back to 2m. The system with M-MRAC has a rise time of 0.74 s, a settle time of 2.36 s, the

lowest point at 0.41m below the starting point and an overshoot of 27%. The main di�erence

to the simulation is, that when increasing to factor 1.62 and to 1.27 respectively, the system

with M-MRAC has no real di�erence until at about 0.4 seconds. That is an indicator of the real

system being more lethargic than the simulation. Figure 5.17 shows the vertical velocity when

increasing mass with factor 1.27 without M-MRAC and Figure 5.18 shows it with M-MRAC. It

can be clearly seen that with M-MRAC the real velocity reaches the reference behavior after
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Figure 5.16: Results of the real quadrocopter of holding altitude and suddenly increasing mass to factor 1.62 with
and without M-MRAC

about 0.6 s and then converts together to 0; without M-MRAC the real velocity only reaches

the reference and desired velocity when it is about 0, meaning the drone reached the desired

altitude.
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Figure 5.17: Vertical velocity of the real quadrocopter of holding altitude and suddenly increasing mass to factor
1.27 without M-MRAC

The last point is the �ight dynamics of the changed system. Figure 5.19 shows the system

behavior with the 52 g clamp attached and Figure 5.20 the behavior with the use of M-MRAC. It

can be seen that the system without M-MRAC does not reach the desired maximum velocity in

the maximum possible time without �ying out of the experimental setup. It is inert in compar-
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Figure 5.18: Vertical velocity of the real quadrocopter of holding altitude and suddenly increasing mass to factor
1.27 with M-MRAC

ison to the behavior without an attached weight from Figure 5.12. Without M-MRAC the rise

time increases from 0.28 s to 0.39 s. With M-MRAC the rise time remains 0.17 s . So the system

without M-MRAC had a 39% increases in rise time, while the system with M-MRAC, consider-

ing the accuracy, had no increase. However, the overshoot of the system with M-MRAC rises

from 8.3% to 11.8% , which means that rise and settle time di�er here. The settle time of the

system with M-MRAC and attached weight is 0.25 s, which is still faster than both rise times of

the system without M-MRAC.

During the �ights there was a noticeable behavior of the attitude control, that should be men-

tioned, but cannot be shown due to the lack of data. Because of the faster rise and sink rates

when using M-MRAC, often the throttle of the single motors came to the limitations of the al-

lowed maximum power output of the ESCs. This leads to problems with the attitude control,

because it had no more possibilities to reduce the throttle when at minimum or increase it when

at maximum power. Although this has no impact on the altitude control, there has to be an ad-

justment to avoid this behavior. This could be an easy limitation of the maximum and minimum

throttle by the altitude control, to give the attitude control room to adjust, even at the maximum

sink rate.
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Figure 5.19: Vertical velocity of the real quadrocopter when changing altitude with a mass factor of 1.27 and
without using M-MRAC
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Figure 5.20: Vertical velocity of the real quadrocopter when changing altitude with a mass factor of 1.27 and with
using M-MRAC
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6 Conclusion

In this thesis an M-MRAC for altitude control of a quadrocopter with a cascaded controller

structure was implemented and tested. The adaptive controller was implemented, so it did not

rely on the limitations of the inner controller. This makes it more applicable also to other than

the to the speci�c quadrocopter. The results of the evaluation of the simulations as well as the

real system show an improvement of behavior when changing the mass of the system up to

the point where the normal system was not able to �y properly anymore. This shows that an

M-MRAC is suitable as an extension for the MIDRAS-copter’s altitude control.

Without any change of system settings, the normal behavior was a�ected in a way that can

be traced back to the M-MRAC, leading to faster rise times but higher overshoots, even with the

reference system having no overshoot. This needs further investigation of the parameters and

the gains of M-MRAC and for the reference model itself. The simulation showed that M-MRAC

can lead to desired �ight behavior, but it also showed that it is not able to rebuild the exact

reference model without deviation. It has to be clear that for M-MRAC to have an impact, there

�rst needs to be a di�erence to the reference model.

Therefore M-MRAC is not an alternative to tuning the default controller properly to the de-

sired behavior.

The implementation now has to be tested on several di�erent systems, for con�rmation of its

�exible use. First tests were positive, but are outside the scope of this thesis. The focus is on the

large MIDRAS-copters that will carry the net to catch drones, and therefore have the impact of

a rapidly changing mass. Furthermore, as explained in the last paragraph of Chapter 5.2, there

is the need for some modi�cations regarding the interplay of the altitude control-complex with

other controllers.
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A further step for the adaptive altitude control is the implementation of a simple identi�cation

of the maximum possible rise time of a system, and adapting the reference model to this rise

time. This would be the �rst step of a simple MIAC.

For adaptive control in general, the other 5 degrees of freedom of the pose of the quadrocopter

could be controlled with adaptive controllers, to a have the complete drone following an optimal

virtual reference drone.
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7 Abbreviations

CMRAC Combined Model Reference Adaptive Control

ESC Electronic Speed Control

LQR Linear-Quadratic Regulator

MIAC Model Identi�cation Adaptive Control

MIT Massachusetts Institute of Technology

M-MRAC Modi�ed Model Reference Adaptive Control

MRAC Model Reference Adaptive Control

PID Proportional Integral Derivative

SOAS Self-Oscillating Adaptive Systems

SPR Stability Proof Rule

STR Self-Tuning Regulator

UAV Unmanned Aerial Vehicle
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Figure 9.1: MATLAB/Simulink implementation for the altitude control using the two controllers. MRACwith MIT
and SPR can be attached to the multiplication and when additionally the M-MRAC block is attached to
the unconnected SUM-block the MRAC becomes M-MRAC

C++ code representing the reference system for 4.3

/* Storage of the last 10 derivatives. Because of a queue

system the position of the latest data has to be remembered

*/

int startWith = 9;

double dLast[10]={0,0,0,0,0,0,0,0,0,0};

/* auxiliary variables for the beta function */
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double feedbackBeta=0;

double i1=0;

double i2=0;

/* transfer Function of form (a*s+b)/(s^2 + c1*s + c2)*/

double a=0;

double b=90;

double c1=17;

double c2=90;

double lastData=0;

/* calculating the next reference velocity with the input

data. Dt is the time since the last data */

double nextRef(double data, double dt) {

//---------PD-Controller----------------

if(dt<=0)dt=0.005;

dLast[startWith]=(lastData-data)/dt;

lastData=data;

double d=0;

for(int i=0;i<=8;i++)

{

d+=dLast[startWith--];

if (startWith == -1)

startWith= 9;

}

d+=dLast[startWith];

d/=10;

d*=a; //factor for D

double p=b*data; //factor for P

double outputAlpha=p+d;

//--------- double integrateion-controller----------------
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double inputBeta=outputAlpha-feedbackBeta;

i1+=inputBeta*dt;

i2+=i1*dt;

feedbackBeta=i1*c1+i2*c2;

return i2;

}

C++ code representing the M-MRAC adaptation for 4.2

double maxAdaptationIntegration = 15;

double refV = 0;

//For MMRAC

double factorLinear = 2.5;

double factorIntegral = 1.0;

double integralAdpatation = 0;

//Gain with MIT

double maxAdaptationIntegrationMIT =5;

double integralMIT=1;

double mitGain = 2;

double getNewPWM(double setVelZ, double VelZ, double dt, bool

inFlight, double pwm) {

if (!inFlight)

return pwm;

//getting next reference velocity



Appendix 54

double refV = nextRef(setVelZ,dt);

//error of reference velocity to real Velocity

double e = (VelZ-refV);

double e_MIT=e*refV;

if(refV<0){

e_MIT*=-1;

}

//using MIT rule and M-MRAC-concept of calculating new pwm

double e_MIT =refV;

double a = integralMIT - e_MIT * dt * mitGain;

double b = integralMIT - e_MIT * dt * mitGain;

if (!(a > maxAdaptationIntegrationMIT || b <=0.1))

integralMIT += e_MIT * dt * -1 * mitGain;

//Integration of the error fpr M-MRAC

if (!(integralAdpatation + e * dt > maxAdaptationIntegration

|| integralAdpatation + e * dt < -

maxAdaptationIntegration))

integralAdpatation+= e * dt;

//integral + linear part

double addM_MRAC = integralAdpatation * factorIntegral +

e * factorLinear;

return ((pwm+50)*integralMIT - addM_MRAC)-50;

}
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