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Zusammenfassung

Der Einsatz von Robotern ermöglicht eine risikofreie Erkundung unbekannter und potenziell
gefährlicher Umgebungen wie dem Weltraum oder Planetenoberflächen. Unwegsames Gelände
stellt jedoch hohe Anforderungen an Roboter, insbesondere an ihr Fortbewegungssystem. Die
vorliegende Arbeit untersucht einen neuartigen Antriebsmechanismus für Kugelroboter, der auf
Rotation durch teleskopische Linearaktuatoren beruht. Der Ansatz verfolgt dabei das Ziel,
bei unbekanntem Terrain möglichst hohe Flexibilität der Fortbewegung zu gewährleisten. Die
Vorteile bestehen aus der Vielseitigkeit der Nutzung dieser Linearaktuatoren und den insgesamt
bleibenden Vorteiles des Kugelroboters, welche sich möglichst wenig auf ein Terrain spezial-
isieren und die Payload optimal schützen. Die erarbeiteten Lösungen bieten eine mathematisch-
physikalische Systembeschreibung, einfache Algorithmen zur Steuerung und Regelung der Fort-
bewegung und des Balancierens, eine Dimensionierung der Bauteile und des Roboters, sowie all-
gemeine Berechnungen zu maximal erreichbaren Leistungsparametern des Roboters. Ein erster
Prototyp beweist die grundsätzliche Tauglichkeit des Systems. Zudem werden auch Konzepte
für komplexere Regelungen, die ihre Umgebung direkt mit einbeziehen, konzeptuell erläutert.



Abstract

The usage of robots enables a risk-free exploration of unknown and potentially harsh envi-
ronments such as space or planetary surfaces. However, rough terrains place high demands on
robots, especially on their locomotion system. The present work investigates a novel locomotion
approach concerning spherical robots based on rotation using telescopic linear actuators. The
approach has been developed with the goal of achieving the highest possible flexibility of loco-
motion in unknown terrains. Its advantages consist of the versatility of using linear actuators
and the capability of the spherical robot to optimally protect the payload, focusing as little as
possible on a specific terrain. The developed solutions offer a mathematical-physical system de-
scription, simple algorithms for the control and regulation of the locomotion and balancing, and
a dimensioning of the components and the robot, as well as general calculations for determining
the maximum achievable performance parameters of the robot. The first prototype proves the
basic suitability of the system. Yet the results indicate the need for a custom-tailored solution,
as a budget version does not fulfill the desired demands. This thesis further explains concepts
pertaining to more complex control systems that directly factor in their environment.
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Chapter 1

Introduction

1.1 Motivation

Despite the huge variety of shapes and locomotion systems of robots, only four types are used
as baseline for extraterrestrial ground exploration: Robots having mobility based on wheels,
tracks, legs, and combinations of them [70]. To date, no planetary surface exploration rover,
including those launched by the European Space Agency (ESA) and the National Aeronautics
and Space Administration (NASA), has been equipped with a locomotion system different from
the above-mentioned ones. All locomotion systems in use employ four to eight wheels and a
combination of legs [2, 3]. This validates the widespread practice of using well-known tech-
nologies and conservative mechanisms in space missions rather than cutting-edge approaches.
However, with the rise of private companies like SpaceX, Boston Dynamics, and Axiom Space,
non-public-driven development and research enter the field of space suitable robotics. This, as
well as the comprehensive usage of wheeled rovers, leads both agencies to open up the field
to new, alternative robotic approaches. Further, the technical development process has shifted
from being purely internal to an open, collaborative search of ideas, as indicated by the open
calls for ideas and competitions held. Both, NASA and ESA, have adopted this approach for
getting inspiration from outside - NASA with its "Call for Ideas" (CFI) [1] and ESA with its Sys-
Nova assessment scheme [4]. This approach often leads to solutions, shifting the field of versatile
multipurpose robots, often designed as rovers themselves, carrying a payload, to an all-in-one
system, wherein every facet of the robots is build around the science requirement. This is the
case for the previously mentioned SysNova assessment scheme developing a robot for lunar cave
exploration, called "Descent And Exploration in Deep Autonomy of Lava Underground Struc-
tures (DAEDALUS)." Designed for lunar cave exploration, this shape of the robot, locomotion
system, and all other aspects are built to suit the requirements for exploring moon caves and
the restrictions associated with the use of optical and laser scanners. Chapter 2 discusses the
details of the DAEDALUS project. It was from this project that the Telescopic Linear Driven
Rotation Robot emerged. The robot has its spherical shape due to environmental reasons and
mechanism due to the payload.
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2 Chapter 1. Introduction

1.2 Outline

The structure of this thesis is as follows: Chapter 2 summarizes the DAEDALUS project, as
it is the main reason for the emergence of this locomotion approach and the resulting TLDR
robot. It also sums up the main advantages of this locomotion technique along with the general
advantages of the spherical shape. Chapter 3 presents the previously used locomotion approaches
for spherical robots. It splits up the topic into mechanisms inside the sphere, and extrinsic
mechanisms, focusing on the use of linear actuators. Next, Chapter 4 analyzes the locomotion
concerning spherical and cylindrical robots using linear telescopic actuators and examines the
general usage of linear actuators in round-shaped robots. A general mathematical model is
introduced for both the aspects and specific solutions associated with the DAEDALUS specific
robot approach. The combination of locomotion and balancing yields, besides naive approaches,
an innovative controlling mechanism. This mechanism uses a virtual plane and map directly
for controlling. This thesis yields a description and discussion of it, and establishes a first
mathematical model. Chapter 5 describes the prototype, which is then evaluated in Chapter 6.
The evaluation examines the approaches in the order in which their corresponding theory has
been introduced. It proves the algorithms developed from their mathematical representation.
Lastly, Chapter 7 concludes all the discussed topics and gives an overview of further research in
the field.
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Chapter 2

Background

The background to the linear telescopic actuator robot is the DAEDALUS project [68]. It was
part of a 2020 SysNova study [4] and the Concurrent Design Facility (CDF) later [12], both
run by the ESA. The 2020 SysNova study reached out for robotic solutions for exploring and
mapping lunar lava caves and tubes. The largely unknown lunar cave environment poses a
challenge, leading to huge risks for the robot and equipped sensors. Nonetheless, some aspects
of the cave environment are already known, like the presence of very sharp rocks formed due
to the lack of erosion by wind or similar factors. This is detrimental for most robot designs
currently used in space exploration. Additionally, the considerable temperature range on the
moon from 100 K to more than 500 K is very challenging for the robot. As a novel approach,
the DAEDALUS project introduced a spherical robot. Figure 2.1 shows the blueprint of the
robot, and Figure 2.2 illustrates a representative rendering.

The spherical shell of the robot protects the inner sensors such as the laser scanner, optical
sensors, dosimeter, etc., from the described harsh conditions. Unlike wheeled robots, which are
mostly designed for specific environments, a sphere functions well in a wide range of possible
terrains. A sphere with shock-proof components can safely maneuver through rough tracks,
which pose the risk of falling (from rocks or other objects). The mission formulated by the
ESA was to descend into the lunar pit and then explore the caves once reaching the ground.
An external crane carries out the descend. Therefore, ground exploration requires self-initiated
locomotion. Factoring in all requirements, which are addressed in the final non-public report of
the CDF study by ESA and in huge parts in the DAEDALUS report [68], leads to a combined
locomotion design based on two different approaches.

The first is locomotion by rotation: The DAEDALUS sphere consists of inner and outer
structures that are rotatable relative to each other. This was created to meet the need for a
360 ◦ coverage of the pit while descending, which is only possible either by increasing the number
of sensors or making fewer sensors rotate. Due to the use of different sensors (optical and LiDAR
(Light Detection and Imaging)) and failure-redundancy, the rotating approach was chosen. For
the LiDAR with a horizontal coverage of 38.4 ◦, the following scanner-to-failure ratios emerge.
With two rotating scanners, the robot can still achieve full coverage even if one scanner is out of
order. However, any failure in one of nine non-rotating scanners leads to the loss of full coverage.
With 18 non-rotating scanners, despite having nine more, only one failure still allows always
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Figure 2.2: Rendering of the DAEDALUS sphere.

full coverage. Moreover, with two neighbored failures, full coverage is impossible. Therefore,
the mechanism might add additional points of failure but decreases the required amount of
scanners drastically. The center of mass of the robot is not at the center of the sphere, but the
mass distribution of the outer structure is distributed evenly. Hence, the rotation of the two
structures leads to translation, as the outer structure starts rotating, and the inner structure
is always pointed toward the ground due to the low center of mass. Chapter 3 explains this
principle in more detail. This technique facilitates good locomotion on relatively flat surfaces,
but based on this approach, the sphere can only overcome obstacles of less than half its size
in theory. Calculations with a realistic mass distribution presented in the DAEDALUS report
showed that the sphere can merely overcome obstacles of up to 10 percent of the diameter of the
sphere. Now, the second locomotion method is realized by the rods mounted inside the sphere
as part of the outer structure. These rods are a result of the following requirements for the
DAEDALUS sphere:

• Ability to overcome bigger obstacles than possible by solely utilizing mass distribution:
Since the utilization of thrusters is not allowed by the ESA due to their huge environmental
impact, another mechanism is required for lifting or pushing the sphere over obstacles.

• Extendable parts in or attached to the sphere for heat regulation.
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6 Chapter 2. Background

Figure 2.3: Scanning mode of the DAEDALUS sphere. Poles on both sides extend in order to anchor
the shell. Then the inner structure holding the LiDAR-scanner rotates, scanning the environment.

• A pole mechanism for pushing the sphere away from the pit wall in the worst-case scenario
and the aperture of the pit does not allow a direct descent without touching the wall.

• Transparent/open sides for cameras and LiDARs: Due to the rotating scanners, the line
of sight toward the side of the robot needs to be unobstructed, at least in some moments
of the rotation.

• Rotation of the inner structure on the ground to ensure full coverage once inside the pit.

Figure 2.1 shows the final design with all the requirements and behaviors carried out by the
approach of poles in a star-shaped way. The telescopic rods are extendable to the outside
of the sphere, and they lead to rotation by pushing the sphere forward, once on the ground.
Furthermore, the rods enable the DAEDALUS sphere to overcome obstacles up to its own size.
Besides, the sphere uses the rods for additional tasks, like for heat control by extending them
while descending or at the bottom of the pit to enlarge the surface area for radiation. Or, for
pushing itself away from the pit walls during the descending phase and also for enabling its
scanning mode. In this mode, four rods, two each on the front and rear, extend so that the
sphere does not roll in any direction. Using the motors, which connect the inner structure to
the outer one, leads to the rotation of the inner structure, while the outer structure does not
rotate due to the extended rods. Figure 2.3 depicts this scanning mode. Chapter 4 will further
discuss the advantages and disadvantages of the locomotion using extendable telescopic rods.

Combining the rotation of the center of mass and the rods gave DAEDALUS the ability to
climb over perpendicular obstacles. A general pole-driven robot does this by rolling in an orien-
tation where one pole is facing straight down, and if the mass of the sphere is perfectly balanced,
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Figure 2.4: The concept of combining the internal rotation of the center of mass and rod extension to
overcome perpendicular obstacles.

it pushes itself directly up. However, even minor imperfections or the starting orientation not
being absolutely perfect leads to the robot falling over. In contrast, DAEDALUS rolls on an
obstacle with one rod on each side down, but still avoids this risk. It extends the two rods so
that they anchor to the ground. When starting the motors, the internal structure will rotate,
while the outer structure remains stationary, just like in scanning mode. The center of mass
the lies between the line of the extending poles and the perpendicular obstacle with a slight
rotation. When pushed straight up, the sphere will not tip backward as the center of mass is
shifted to the side of the obstacle. Figure 2.4 depicts this procedure.

During the DAEDALUS study, the telescopic pole mechanism was handled as a black box
and not technically investigated, despite the rods being crucial for the main functions of the
sphere. During the CDF study, experts from the ESA and the DAEDALUS team members
discussed hydraulic and electric extension possibilities. The hydraulic solution was dismissed
due to concerns about the fluid as it needs to be capable of withstanding the huge temperature
range on the moon. Consequently, the electric solution was seen as a more straightforward and
reliable approach. Chapter 5 will discuss the possible actuators separately from the discussion
held during the DAEDALUS study.

The DAEDALUS sphere may not be the proof for the superiority of locomotion by rods.
Yet, it is a justification of the concept, as it shows how and why the idea was created, and that
one of its major advantage is the versatility of usage besides locomotion. This thesis focuses
purely on the usage of rods as a locomotion system for a sphere and excludes all of their other
possible uses. This also precludes the combination of the pole-usage with an internal change of
center of mass or similar mechanisms like DAEDALUS introduces. A changing center of gravity
together with the TLDR approach for spherical robots will be covered in future research.
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Chapter 3

Related Work

Chapter 2 highlighted the unique requirements for the DAEDALUS project [68], which guided
the development of the TLDR approach. The following sections discuss related/previous work
on the locomotion of spherical robots.

First, we look into locomotion approaches that use mechanisms inside the sphere. These are
the mostly used locomotion techniques and have a long history. Therefore, they are often well
studied and have been examined through multiple prototypes.

Second, we present locomotion approaches that use mechanisms exceeding the spherical form
and interact more directly with the environment outside the sphere to generate locomotion. Our
TLDR approach uses telescopic extending linear actuators, extending from the inside to the
outside of the sphere, and interact with the environment by pushing directly into the ground
or generating leverage. Therefore we focus in this second part of the related work especially on
the usage of linear actuators in this field. This field is much more unexplored, and only a few
prototypes deal with this kind of mechanism.

3.1 Internal Mechanisms

One of the concepts of spherical robots is found in the patent "508,558" for a spherical toy,
filed in 1893 by J.L. Tate [77]. Inside this sphere is a counterweight that will point toward the
ground due to gravity. The counterweight is mounted on a middle-axis and is rotatable around
it. Also a spring connects it to this axis. Due to the spring, the rotation is loaded by winding
the counterweight in one direction. When released, the force of the spring will rotate the weight
in the opposite direction. The weight pointing to the ground causes the shell to rotate and thus
translate. DAEDALUS and several other spherical robots also use this rotational approach based
on the internal rotation of weight. However, most prototypes nowadays use electric actuators to
realize a controllable way of locomotion, and they do not require preliminary work like spring
loading. Chase and Pandya describe this locomotion by shifting the center of mass in [19] as
the governing principle. Also, the DAEDALUS project examined a spherical robot employing
this locomotion approach. Figure 3.2 shows the said prototype. It uses its battery as a weight
to generate torque. This is done by rotating it around the central axis of the sphere, which
is parallel to the ground and perpendicular to the rolling direction. Furthermore, there is a
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10 Chapter 3. Related Work

Figure 3.1: Patent 508,558 claimed by J.L. Tate [77]. A spherical toy, with an internal, spring-loaded
counterweight, which is rotatable around the middle axis.

second actuator, which changes the angle in the rolling direction. This enables the sphere to
roll to the side, whereto the weight is shifted. This approach was adopted in the design of the
final DAEDALUS sphere [68]. Koshiyama and Yamafuji designed and built a spherical robot in
1993 using this approach [46]. Although its basic idea was rotation by internal weight rotation,
the presented construction of the sphere was more complex than most of the here presented
prototypes. They investigated basic movements and the equations of motions. Figure 3.3 shows
this prototype. More recent robots utilizing this method of locomotion are the BYQ-III [50],
and [6], in which Alizadeh and Mahjoob apply this locomotion technique on the water surface,
as well as [63] and [54], each providing an application of pendulum-based rotation mechanism.
Yang et al. used two completely rotatable pendulums, with one built perpendicular inside the
other, whereas all other presented prototypes with two pendulums, limit the second rotation [84].
The evaluation finds no real advantage for the setup if the second inner pendulum is limited to
-0.5 rad to 0.5 rad. [52] and [86] used the pendulum approach but split the weight into the left
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3.1. Internal Mechanisms 11

Figure 3.2: Prototype examined during the DAEDALUS study [68]. It uses the concept of rotating
internal weight for locomotion. For DAEDALUS, the weight is the battery. Furthermore, the weight is
rotatable around the axis in the line of movement. This enables steering.

and right side. Rotating these two sides the same way produces the same effect as if it was one
single weight. However, differing the speeds or directions of both weights generates a rotation
on place around the axis vertical to the ground. Also, having both sides rotating in the same
direction but with a bit of offset enables cornering. Generally, rotating internal weights provides
a smooth, well-controllable locomotion but significantly limits the size of obstacles the robot is
able to overcome.

Christopher Batten and David Wentzlaf from the Massachusetts Institute of Technology
developed a spherical robot in 2001, named Kickbot, that employs the primary approach of
rotating an internal structure versus an outer structure for movement [13]. The shell of the
robot is split into two halves, with the intersection in line with the direction of the rotation.
Both halves are controlled and actuated separately, despite being mostly instructed the same
way. This enables Kickbot to perform additional movements and have a different way of steering.
The possibility to perform on-place actions by rotating the halves against each other is provided
but not explored deeply in the published work. Figure 3.4 shows the prototype. The closer
the halves are and therefore the smaller the gap is, the lesser the effect of the rotation on
the spot. This is because the rotation is dependent on a small but existing distance between
both counter-rotating sides. In an abstract way, this is like there being a robot having two close
wheels at its sides. With this, the purpose of the spherical shell, to protect inlaying payloads from
environmental influences, is more complicated to achieve than with other approaches because of
the two separate sphere halves.

In contrast, the robot Rotundus, created at the Ångström Space Technology Center for
Project Mercury (ordered by the ESA) and later developed by the Rotundus AB corporation,
was specially designed to withstand a wide variety of environmental influences [24, 36]. Its
locomotion system works based only on the rotation of an internal weight, but it was designed to
have the durability and ability to maneuver through many environments that may not otherwise
be robot-friendly. It is completely sealed from the environment. Figure 3.5 depicts the Rotundus
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Figure 3.3: Prototype developed by Koshiyama and Yamafuji (1993) using the concept internal shifting
of weight for locomotion [46].

and its successor GroundBot in different environments.
A second approach for locomotion of spherical robots is the use of internal momentum.

This is done in [14] and [58], wherein internal gyroscopes were used to generate overall rotation.
Using this technique, obstacles up to the own radius of the sphere can be overcome, although this
implies a massive amount of generated momentum. The L.U.N.A. sphere employed a subtype of
this approach, the concept of Impulse By Conversation Of Angular Momentum (IBCOAM) with
two flywheels placed parallel on both sides of the sphere [87]. This was part of the research for
determining suitable locomotion approaches for DAEDALUS. The shortcoming of this approach
is the substantial power consumption for a relatively low amount of generated momentum.
Moreover, the controllability is limited and only fully achievable with greater efforts than with
a simple weight-shifting approach. Figure 3.6 depicts the L.U.N.A. sphere. A noteworthy work
using both approaches, or at least parts of them, is the prototype Cyclops, developed by Chemel
et al. [20]. Figure 3.7 illustrates this prototype. The inner structure of the prototype is connected
to the sphere at two points and is entirely rotatable. Additionally, a rotational mass is mounted
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Figure 3.4: Kickbot by Christopher Batten and David Wentzlaf [13]. For locomotion it uses two
rotatable sphere halves and an internal structure with low center of mass to.

at the bottom of Cyclops. This mass ensures a smooth rotation and controls angular velocity
in the yaw angle (axis perpendicular to the ground). Qingxuan et al. go even further in [65] to
add a third actuator, rotating the axis of the rotational mass, which they reduce to a flywheel.
This enables their robot BYQ-V to use the generated momentum more precisely and in other
ways than to just smoothen the locomotion. One such application is the standing mode, where
the flywheel is rotated perpendicular to the ground. The generated momentum is then used to
turn the main axis of the sphere upwards while rotating the flywheel to stay perpendicular to
the ground. This is useful as the BYQ-V has an extendable camera, which is extended out of
the main axis in standing mode, enabling a good, unobstructed 360 ◦ view due to the elevated
position.

Another spherical robot design has a more or less independent inner unit in the sphere,
called the "hamster-wheel model," developed by Tomi Ylikorpi and Jussi Suomela in [85], or a
more formal "Internal Drive Unit (IDU)" by Halme et al. in [28]. The concept is very similar
to a hamster running on a wheel, forcing it to rotate, with the difference being that the design
incorporates a sphere and technical device instead of a running wheel and hamster respectively.
Alves and Dias in [7] used a direct application of this concept. They used a four-wheeled vehicle
inside of a sphere, which did not have any technical, electrical, or structural components despite
the shell itself. The four wheels of the vehicle were independently controllable and driving them
with different rotational speeds resulted in a curved trajectory of the overall sphere. Figure 3.8a
shows this prototype.

The prototype showed very good behavior in terms of controllability. It is interesting to note
that the vehicle enables the sphere to roll in any direction (not directly but by rolling curves;
therefore, it is not holonomic), but the vehicle itself does not have an instantaneous center of
curvature (ICC) and therefore, with respect to mobile robot kinematics, is not able to move in
curves on flat ground without slip. In contrast to the two previously discussed designs, this kind
of robot is energy efficient as the internal vehicle must move to a small degree, leading to the
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Figure 3.5: Rotundus (left) and the successor GroundBot (right), originally investigated by Ångström
Space Technology Center, now by a Swedish company [36][24]. Both use an internal rotatable weight for
locomotion. The design focuses on durability in rough terrains. The Groundbot has two acrylic domes
on each side for camera sensors.

rotation of the sphere against the rotation of counterweights, which have bigger levers. From
the point of view of the internal device, it just rides a slope of a certain degree all the time.
Bicchi et al. used the same idea of an internal vehicle, but with unicycle kinematics, using just
one actuated wheel. The wheel is fitted onto a round structure with stabilizing wheels, but it
is the only actuated wheel. It is rollable around two axes: for the rotation of the wheel itself
and for steering. This enables the robot to roll in any direction on the ground without the need
for rolling curves. Therefore, it is holonomic. Zhan et al. adopted this unicycle architecture
in [89]. The direction of the monowheel is not rotated directly by an actuator but by a wheel,
which rolls on the disk at the center. They successfully tested their prototypes, like with the
previously mentioned Rotundus, in different rough environments like sand and water. In [22],
Chen et al. constructed a sphere as an internal unit inside an outer sphere. Therefore, the inner
sphere is actuated and always rolls on the bottom of the outer sphere due to its weight. The
rest of the design employs the same principle as the other drive units, with the only difference
being in the mechanism of the unit. Another design of the IDU incorporates two parallel wheels.
Nguyen et al. implemented this in [61]. Their IDU has in many domains the same dynamics
as the unicycle approach. However, instead of an external actuator defining the angle of the
rolling direction of the wheel, it is now done by rotating the two wheels in the opposite direction
or at different speeds. The electronics and structure are between the two wheels and do not
exceed the radius of the wheel. The robot is called Virgo, and Figure 3.8b shows the prototype
Virgo 2.5. In [35] and [34], Karavaev et al. introduce a prototype in which the IDU has three
Swedish wheels. Figure 3.9 depicts the concept of this prototype. This holonomic IDU leads
to an overall holonomic robot. A shortcoming of this was the difficulty to keep movement
straight due to the peculiarities of Swedish wheels. Nevertheless, they managed to develop a
well-controllable robot with an adapted control system. They state that the implementability
of a control system for this kind of IDU relies on the absence of slip between the IDU and
shell, as well as between the shell and ground. This is also problematic for other prototypes
but especially for this type. This leads to an general problem affecting all non-fixed IDUs. Not
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Figure 3.6: L.U.N.A. sphere that uses the IBCOAM (impulse by conversation of angular momentum)
drive [87]. As the two flywheels on the side start rotating, the overall sphere starts rotating in the other
direction due to the conversation of angular momentum.

Figure 3.7: Prototype Cyclops by Chemel et al. [20].
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(a) (b)

Figure 3.8: Prototype made by Alves and Dias (left) [7]; The robot Virgo 2.5 developed by Nguyen
et al. (right) [61]. Both used an IDU for adopting the locomotion approach. Alves and Dias used a
four-wheeled car like IDU, and Virgo 2.5 uses a two wheeled IDU.

Figure 3.9: Concept of Swedish-wheel IDU by Karavaev et al. [35] [34]. The IDU holds three Swedish
wheels and is therefore holonomic.
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(a)

(b)

Figure 3.10: Left: The concept of the spherical robot with tightened IDU by Halme et al. with
mathematical variables describing the setup [28]. Right: The concept of the BHQ-2 robot by Qiang et
al. [64].

having any fixed connection to the sphere limits the use of IDU in rough terrains, as falling or
steep slopes lead to unwanted behavior. Also, there is a need to have safety mechanisms if the
sphere gets stuck. In this case, if the IDU does move forward, it climbs the shell, which does
not rotate, and therefore the possibility of a flip is given, which puts the device on its back. For
symmetrically built IDUs, this is not a problem, but for non-symmetrical IDUs, it leads to the
complete dysfunction of the robot. Figure 3.8a depicts such non-symmetrical IDU proposed by
Alves and Dias. One way of overcoming this is by adding mechanisms and/or structures to the
IDU so that it is not loose inside the sphere. Halme et al. did this in [28] by adding a pole
with a balance wheel on one side to a driving wheel of their IDU, which is inevitability at the
bottom of the sphere due to its weight. A spring pushes the balance wheel onto the shell. This
tightens the IDU inside the sphere due to the force of the spring while still being able to rotate
and therefore drive the sphere. If the sphere gets stuck, the IDU will perform a looping if it is
not otherwise prohibited by code, but this does not affect the the overall functionality of robot.
Figure 3.10a highlights the concept. The downside to the design is the additional use of space
inside the sphere, limiting the possible placement of sensors or other payloads. Furthermore,
the additional wheel causes friction, depending on the strength of the spring, which leads to a
lesser efficiency of the overall system despite having the same driving part at the bottom. The
approach has also been examined for cylindrical robots by Reina et al. in [67]. A symbiosis of
this clamped IDU and the internal rotation of weight has been done by Quiang et al. with the
robot BHQ-2 in [64]. Figure 3.10b shows the concept of the prototype. A weight is mounted
onto a bar at the center of the sphere, which is rotatable. The authors refer to it as "heavy,"
which we will follow for clarity. Besides rotating this axis by actuators mounted between the
shell and the bar, a car device is mounted on the bar perpendicular to the heavy. As the mass
of this driving unit is less than the heavy, the heavy will point downward and the driving unit
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(a)

(b)

Figure 3.11: Left: The concept of internal linear weight-shifting of the August robot, developed by
Mojabi et al. in [55]. Right: The concept of a spherical robot created by Zhao et al. using the two-mass-
one-spring approach [90].

horizontal. As the bar is mounted onto the shell, the driving unit will always be pressed onto
the shell. Starting the unit will now lead to the rotation of the bar, which in turn rotates the
heavy, thus leading to the rotation of the sphere.

Another approach for achieving the locomotion of a sphere is by internal weight-shifting,
not by a rotation but in a linear way. Therefore, weights are mounted on bars, connecting
the shell to the center of the sphere. The sphere initiates motion by shifting these weights
along the bar, causing the weight distribution to change to one side, resulting in the rotation
of the sphere. Mojabi et al. adopted this approach with the prototype of the August robot
(2002) in [55], and Mukherjee et al. utilized this in 1999 as the concept of Spherobot in [57].
Figure 3.11a illustrates the concept of the August robot. Lux proposed a method of weight
shifting using wires in an evaluation for Jet Propulsion Laboratory of NASA [51]. The payload
contains winches that connect it to an anchor point on the shell using wires. By activating
the winches, the payload changes position inside the sphere, changing the center of mass and
therefore introducing rotation.

Zhao et al. used in [90] a modification of the weight-shifting approach. They created a
jumping mechanism for locomotion by utilizing the two-mass-one-spring principle. One mass is
the sphere itself, and the other is an internal weight. The mathematical system is built and the
ground-laying concept of the spring-mass behavior is tested in an experimental setup, but there
is no implementation on an actual setup. Figure 3.11b highlights the basic concept.

Lastly, some prototypes and robots use the sphere as the optimal shape for their environment,
where on-board instruments need to be sealed and protected. Also, the sphere is one of the best
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Figure 3.12: Spherobot by Mukherjee et al. in [57]; later patented by Mukherjee [56]. It uses internal
weight shifting for locomotion and has three telescopic limbs for a standstill mode.

shapes when it comes to aerodynamic efficiency and flexibility for movement. Thus, several
projects investigate spheres for underwater usage, but they do not use the sphere for locomotion
purposes. Li et al. describe these advantages of the spherical shape for underwater missions but
use a rotatable thruster concept, where four rotatable thrusters are mounted onto the sphere [48].
Guo et al. mention the same advantages but use water jet actuating [27]. These and similar
robots for other rough terrains all use the spherical shape but are not limited to the spheroid
form as their locomotion systems do not rely on it. Therefore, we will not investigate or list
more such examples.

3.2 Extrinsic Linear Mechanisms

The fields of linear-driven robots are, in comparison with those of spherical robots, rather narrow.
We concentrate on such robots, wherein the linear motion of the actuator is directly used for
locomotion and not as a replacement for a rotational actuator. The Spherobot of Mukherjee et al.
has been described previously because of its locomotion by shifting internal weight. However, it
also has linear actuated limbs, which provide stability when the robot is at rest [57]. Figure 3.12
shows the rest position of the Spherobot with extended limbs. The limbs have no other purpose
than providing a stationary position and are not meant for locomotion. Also, the Spherobot
needs to orientate itself correctly to extend the limbs as they have only a very limited influence
on the orientation. When the sphere touches the ground on the shell-surface surrounded by the
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Figure 3.13: Above: The concept of Kisbot by Kim et al. [43]. The sphere consists of one center ring
and two semispheres on each side. Each hemisphere has an extendable, heavy part integrated, which the
authors refer to as "arms." Below: The movement functions of Kisbot.

three limbs, an extension of the limbs leading to stabilization is possible. This is due to the
fixed position of the retractable camera, which makes other stabilizable orientations obsolete.
Thirteen years later, a publication discussed the design and fabrication of the Spherobot, with
Mukherjee as the first author of the original publication. However, this did not include the
extendable limbs anymore, and the reasons for nor including them were not stated [78]. Also,
the original publication as well as the corresponding patent granted to Mukherjee in 2001 [56]
do not hold any information about the actual mechanism of the extension.

Kim et al. in 2010 [43] introduced another prototype using a linear actuator, named Kisbot.
It consists of a sphere divided into three parts: one middle ring and two outer semispheres.
The rotatable semispheres are mounted onto the middle part and are actuated. They also have
a linear extendable part. The upper part of Figure 3.13 shows the concept. For locomotion,
it has two driving modes. One is the pendulum-driven rotation. The extendable parts of the
hemispheres have an increased mass in comparison with the rest of the hemisphere, therefore
shifting the center of mass of the hemispheres toward the extendable parts. As just the inner
ring is in contact with the ground, rotating the outer parts will lead to the rotation of the inner
part and hence translation. The second mode is the wheeling mode, where both extendable
parts are extended, resulting in the overall functioning of the robot like a one-wheel car. The
lower left side of Figure 3.13 shows this mode. Nonetheless, the linear extension is also used for
locomotion as it allows the sphere to push itself on top of obstacles. Further, extending these
parts leads to an abrupt stop, if extended on the side where the robot is rolling towards. This
is shown on the lower right side of Figure 3.13. Both driving modes were tested and evaluated.
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(a) (b)

Figure 3.14: Left: TT-3 prototype[21]. Right: SUPERball of the NASA Innovative Advanced Concepts
(NIAC) Program [5]. Both use the concept of tensegrity. Tensioned cables between the rods give the
robot its shape. These cables can be conveniently retracted or unrolled to change the shape of the robot.

Regarding lifting and stopping, the concept was only described and not implemented.
In 1961, Fuller introduced the concept of tensegrity [25]. As the combination of words

"tension" and "integrity" in the word suggests, it deals with the concept of having structures,
typically bars, not touching each other, due to the tension of cables between each other. These
cables are put at tension to create three-dimensional structures. Robots using linear actuators,
and not bars, leading to a complex changing and therefore an eventually moving structure, is
a well-examined subgroup of robots [79][71][45]. There have been developments in the field of
these spherical robots over the last years. In the research for the NASA Innovative Advanced
Concepts (NIAC) Program, SUPERball (the Spherical Underactuated Planetary Exploration
Robot Ball) has been developed [5, 16, 69]. The design is tailored for planetary missions and
focuses on robustness, flexibility, and cost-efficiency. Figure 3.14b shows the design. It originates
from the TT-1, TT-2, and TT-3 prototypes [21]. In the program, they used the tensegrity
approach to build a robot that was directly considered a spherical robot, and therefore its
dynamics were interpreted with the spherical shape in mind [39]. The TT-3 was especially
analyzed on its locomotion and hopping behavior, including hopping not as a side effect but
as valid locomotion [40]. Figure 3.14a shows the TT-3. The evaluations showed good, despite
being complex, controllability, and limited sensing capabilities [16]. Also, the TT-3 requires
huge computational power [5]. Although it is implemented using wires that are curled up and
back, the behavior is the same as with linear actuators. There is also a wide range of robots
consisting of these linear actuators only, but not in a specific spherical shape like the SUPERball
or TT-3 [31, 80]. The basic approach for locomotion for this kind of spherical robot does not
often differ from the prototype introduced in this work, but using an actuator influences the
whole structure in fundamental ways, making it hard to evaluate single actuator actions.

Armour et al. developed a jumping spherical robot named Jollbot [8], as shown in Fig-
ure 3.15a. The basic approach of the robot is the deforming of the sphere, as described pre-
viously. Jollbot uses a single linear actuator to perform the deformation, basically flattening
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(a) (b)

Figure 3.15: Left: Jollbot by Armour et al. [8]. Eight bendable poles are connected to each other
at both sides, thus forming a sphere. The motor inside can pull both the connection points together,
thereby reshaping the robot. Right: The rolling principle of the prototype made by Wait et al. [81]. The
spherical robot consists of multiple cells, which extend and retract to generate rotation. This procedure
is visualized in 2D.

out the sphere by pulling two ends toward each other. As its overall shape is more of an oval,
the Jollbot is stabilized in that orientation, ensuring the retraction axis is perpendicular to the
ground. Extending the mechanism promptly, which is technically achieved by a spring-loaded
mechanism, will make the Jollbot jump. A pendulum mechanism performs all further locomo-
tion actions. Despite looking like a completely new approach, its underlying mechanism is again
a movement of the center of mass [9]. Sugiyama et al. [75] built a prototype with the same
principal of deformation. This robot was not only able to climb steep slopes but also jump as
high as twice its diameter. It uses shape-memory alloy (SMA) spokes connected from the center
to the soft rubber shell. When applying voltage on one SMA spoke, it contracts, changing the
shape of the robot. However, it needs to be said that the robot uses an external power supply.
For achieving full autonomy, using an internal supply would add additional weight. It is a robot
of small dimensions, having a diameter of 4 cm and weighing 3 g. Despite being designed as a
spherical robot solution, its overall behavior and implementation were limited to a cylindrical
problem.

Wait et al. also applied deformation for locomotion but with an actual spherical robot [81].
This shell of the robot is segmented into hexagon cells, which separately extend or retract. This
enables the robot to move directly in all directions on the ground. To do so, it extends the cells
on the opposite side of the intended direction of locomotion. This is visualized in Figure 3.15b.
This is similar to our TLDR approach, introduced later, but instead of cells pushing the robot,
we use telescopic poles extending from inside the sphere. Additionally, the prototype by Wait et
al. uses the shape-changing aspect for the whole robot, besides the direct pushing effect of the
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Figure 3.16: The BionicWheelBot of the Festo AG & Co. KG [66]. It imitates the flic-flac spider.
While rolling, the round structure itself consists of six legs of the robot, and two are used for pushing.
While walking, only the six legs are used for the walking itself as the two, which push during rolling,
cannot be used due to mechanical restrictions. Above: The Bionicwheelbot in rolling (left) and walking
modes (right). Below: The sequence of rolling. Screenshots from [37].

cells. We will later see that this is also done, at least partly, by our prototype. In their paper,
they introduce a rough controlling strategy with two criteria for extending a cell. If one is met,
the cell extends, otherwise it retracts. For the first proof of concept, this controller works well.

Last, we look into the robot, which seems to be the most similar to our TLDR robot. The
company Festo AG & Co. KG created a robot that imitates the so-called flic-flac spider [66]. This
spider has eight legs; besides walking, it uses a rolling/jumping movement which is best described
by the acrobatic movement known as flic-flac. This spider is imitated by the BionicWheelBot,
which also uses its leg setup for walking and rolling. Figure 3.16 depicts the two modes and
in detail the rolling movement. The robot uses six of the legs to form a cylinder/sphere-like
structure and uses the other two legs to push itself, generating rotation. The pushing legs have a
joint that enables the pushing despite the lateral orientation. Nevertheless, this way of pushing
for rotation comes very close to pushing with linear actuators. Only one pair of legs is used for
pushing, raising the need for enough force generated by the used legs for a full rotation. Also,
this leads to a varying rotational speed during one rotation. All this raises the question of why
the spider has both modes, despite walking with legs being the more general mode of movement
among spiders. Prof. Dr. Rechenberg, the scientific project leader for the BionicWheelBot,
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stated in an interview [44], that movement by rotation has two main advantages. First, the
increased pace. The spider doubles its speed when using the rotation mode. Second, efficiency.
The spider overcomes twice the distance by rolling than by walking until total exhaustion. Due
to the mating process and the need for precise movements, e.g., while hunting, the spider relies on
walking in addition to rolling. We cannot answer if all this also applies to the BionicWheelRobot,
as no further public information about the robot itself is available.

3.3 Summary

Multiple locomotion approaches for spherical robots have already been investigated. Most of
them use an internal mechanism, which mainly limits the capabilities of the robot in terms
of overcoming obstacles and the suitability for uneven terrain. Linear actuators, on the other
hand, are not so widespread, with only a few related prototypes and approaches. For the
rotation of a spherical robot using a pushing movement by an actuator, there appears to be only
one prototype that was actually built, the BionicWheelBot. For this prototype, there exists
no detailed public record of its mechanism and control structure. This led to the motivation
to provide comprehensive basic calculations for our developed approach since the basic motion
sequences and related effects on the robot have not yet been described.
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Approach

The overall challenge and goal is to create a stable rolling robot. Therefore, we split the problem
into two domains. The first one is to initiate the rolling movement leading to translation, i.e.,
locomotion. The second one is to handle the instability to the left and right, i.e., balancing. In
a broader sense, the stability pertaining to the front and the back needs to be considered, to
ensure that the sphere stands still and does not tip over to the front if there are imperfections
in the weight. This is part of both the domains, as stability to the front also means no move-
ment frontwards. For this thesis, we consider it as the problem of locomotion. Therefore, the
locomotion not only needs to initiate rotation but also stop it.

This thesis refers to the angle of a pole as follows: 0 rad is always downward directed perpen-
dicular to the ground, which is also the gravitational vector, increasing clockwise until reaching
2π rad from the right side. 2π rad is referred to again as 0 rad, as we limit the described angle
to positive values between 0 rad and 2π rad.

4.1 Movement

This section first covers the basic locomotion idea with rods, followed by the mathematical and
physical theory for that. Then the special cases of braking and overcoming slopes and obstacles
follow.

The robot can initiate movement using rods in two manners: with and without rotation. The
movement without rotation is initiated by pushing the sphere away from the wall or the ground
by perfectly balancing it straight upwards. Combining this straight upward movement with a
calculated imperfection of the mass distribution of the sphere leads to a fall in the predefined
direction, which overall constitutes a locomotion approach. As this exerts huge impact forces on
the sphere and does not really control its movement, and as the other approach always depends
on a kind of wall, we will not focus on them. Also, the hopping rovers described in Chapter 3
can be developed using rods and lead to movement without relying on rotation. However, this
approach needs an internal stabilizing mechanism to control the hops. Figure 4.1 shows the
three non-rotating approaches described.

The other sort of movement is by rotation. Here, the rotation of the sphere leads to trans-
lation as the friction between the ground and the shell of the robot causes it to roll forward
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Figure 4.1: Locomotion approaches using rods without relying on rotation. From top to bottom: falling,
pushing, and jumping.

rather than slipping at the same place. Therefore, the poles are primarily responsible for the
rotation and secondarily, for translation. Also, for rotation, there are two main ways to initiate
it. The most intuitive is the rotation by pushing against the ground. The rods that lay on
the opposite side of the desired direction of rolling extend, which push into the ground and
generate torque for the sphere, leading to rotation, as shown in Figure 4.2. For this approach,
two parameters need to be found. The first parameter β determines from which angle onward
the extension begins. β must be greater than 0 rad as a pole extending at exactly 0 rad will
not create torque but straight force, pushing the sphere upwards. β needs to be chosen in such
a way that the extension completely leads to torque and not some linear motion. The second
one is α, the angle until which the robot should extend a rod. Despite reasons due to the
control strategy, there are geometrical restrictions for α. It cannot be 0.5π rad or larger as a
pole extending between 0.5π rad and 1.5π rad never touches the flat ground. Between 1.5π rad
and 2π rad, the pole extension will work against the desired direction. The possible extended
length of the poles also determines the maximum α. The larger the chosen α, the longer the
pole needs to be extended to reach the ground, up till the point where the pole is extended but
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Figure 4.2: Initiating the rotation by pushing. The sphere rolls to the right side. The arrows symbolize
poles and are colored for better identification over the rotation.

Figure 4.3: Initiating rotation by leverage. The sphere rolls to the right side. The arrows symbolize
poles and are colored for better identification over the rotation.

not pushing anymore because of the lack of contact with the ground. From that moment on,
the pole works against the pushing force due to its leverage. This same behavior can occur if
the poles only have one extending speed and a continuous rotation is desired. The steeper the
angle to the ground is, the faster the poles need to be extended to cause a constant rotation.
When designing such a system with mono-speed rods only, one task is to determine from which
angle the extending rod does no longer matches the desired continuity of the rotation speed.
Subsection 4.1.2 investigates this mono-speed behavior in more detail.

The second approach of creating torque for the sphere is by leverage. As the poles have a
weight, extending them without any contact to the ground provides leverage. Extending the
poles between π rad and 2π rad leads to leverage, creating a clockwise rotation that leads to
translation. This is shown in Figure 4.3. There are no accurate parameters to be determined
as each pole extends over π rad and it retracts so that it does not collide with the ground. This
relies entirely on the mass of the poles, and with too lightweight poles, the friction becomes
more significant than the generated torque. Nevertheless, it is still usable as support for the
pushing approach.

Algorithms 1, 2, 3, and 4 show the pseudocode for four different implementations: only
pushing, only pushing but ensuring just one pole is extending, only working with leverage, and
the combination of pushing and using leverage.
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Algorithm 1: Push-Only Movement Algorithm

foreach pole in poles do

if α < pole.getAngle() < 0.5π − β then
extend pole

else
retract pole

end

end

Algorithm 2: Push-Only Single Movement Algorithm

foreach pole in poles do
if α < pole.getAngle() < 0.5π − β and nextpole.getAngle() > pole.getAngle()
then

extend pole
retract all other poles

end

end

Algorithm 3: Leverage-Only Movement Algorithm

foreach pole in poles do

if π < pole.getAngle() <= 1.5π then
extend pole

else if pole.getAngle() > 1.5π then
retract pole (ground avoidance mode)

else
retract pole

end

end

Algorithm 4: Leverage and Push Movement Algorithm

foreach pole in poles do

if π < pole.getAngle() <= 1.5π or α < pole.getAngle() < 0.5π − β then
extend pole

else if pole.getAngle() > 1.5π then
retract pole (ground avoidance mode)

else
retract pole

end

end
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4.1.1 Mathematical Representation

We will now setup the mathematical representation for the robot and the locomotion of it. We
will first investigate the locomotion by pushing an then by leverage.

Pushing

Let l be the length of extension of a single rod, lmax be the maximum length of extension possible,
and r be the radius of the sphere. Then, α is limited by

α ≤ arccos
(

r

r + lmax

)

<
π

2
. (4.1)

If the angle ζx of a pole is between α and β, then its length lx must be extended to

lx =
r

cos(ζx)
− r , (4.2)

in order to touch the flat ground. To obtain the extension speed for a given desired rotational
velocity of the sphere, the derivative is formed, leading to

l̇x =
d

dt

(

r

cos(ζx)
− r

)

= r · ζ̇x tan(ζx) sec(ζx) , (4.3)

where ζ̇x = ζ̇1 = ... = ζ̇n is the same for all poles and is the rotation speed of the sphere.
Figure 4.4 shows the speed at which a rod needs to extend for a 1 m radius sphere if it needs
to roll at 1 rad/s. Therefore, it can be noted that the maximum possible speed of one pole also
limits α and/or the maximum possible rotation speed. By rearranging Equation (4.3) for ζ̇x and
substituting the rotation speed of the sphere ω for ζ̇x we get

ω =
l̇x

r · tan(ζx) sec(ζx)
. (4.4)

For the maximum possible ω, ωmax now applies

ωmax =
l̇x,max

r · tan(α) sec(α)
, (4.5)

as α is the maximum possible angle ζx. With a lower α, a faster ω can be achieved with the same
maximum l̇x. However, with too low α, the number of rods touching the ground simultaneously
decreases, consequently reducing the applied force to generate torque. Let n be the number of
rods and nf represent the desired number of rods simultaneously touching the ground, then α
should be chosen such that

α ≥ 2π
n

· nf + β . (4.6)
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Figure 4.4: The speed of a rod needed at a certain angle for a rotation speed of 1 rad/s for a sphere of
1 m radius.

Leverage

For using leverage for locomotion, the only parameter to calculate is when to start retracting
the pole. When ignoring the maximum velocity of a pole, we need to ensure that

lx <
r

cos(ζx)
− r . (4.7)

As the premise of multiple poles touching the ground is not given, each pole works separately,
extends as soon as possible (ζx > π rad), and only needs to take care of itself when retracting.
Moreover, the speed of the extension does not directly influence the rotational speed of the
sphere, but it achieves faster, greater leverage. Therefore, it is important for poles to extend as
fast as possible. One restriction to the retraction is if the l̇x,max is fast enough to retract the
pole without touching the ground but staying close to it. This means the retraction waits until
the next moment when the pole would touch the ground. The change of distance between the
ground and the shell at a given angle η between 1.5π rad and 2π rad is therefore given by

l̇ =
d

dt

(

r

cos(η)
− r

)

= r · η̇ · tan(η) · sec(η) , (4.8)

where η̇ is ω. Therefore, at the moment when the pole touches the ground, which is at an angle
of 2π − arccos

(

r
r+lx,max

)

, its (retraction) speed needs to be fast enough to avoid a collision as
the nearer the pole gets to 2π rad, the slower the retraction has to be. The condition for this is

l̇x,max >

∣

∣

∣

∣

∣

r · ω · tan

(

2π − arccos

(

r

r + lx,max

))

· sec

(

2π − arccos

(

r

r + lx,max

))∣

∣

∣

∣

∣

. (4.9)

In this case, the retraction is managed by calculating whether the pole touches the ground in
the next moments or not. The specification of the duration of this time period until collision
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depends on the calculation speed, the responsiveness of the actuators, etc. If the condition of
Equation (4.9) does not hold for the current ω, the retraction needs to be initiated at full speed
even if the pole tip is still away from the ground. Therefore, we first find the angle from which
the pole is faster than needed and hence capable of retracting just before touching the ground.
Let γ be the angle at which this is possible, then the Equation (4.8), using γ as η, ω as η̇, and
l̇x,max as l̇, becomes

− l̇x,max = r · ω tan(γ) sec(γ) . (4.10)

Solving this for γ and substituting −l̇x,max

r·ω with k, results in

γ = π + 2 arctan









1
2

√

1
k2

+ 4 +

√

1
k2 − 4

k
√

1/k2+4
− 1

k3
√

1/k2+4s
√

2
− 1

2k









. (4.11)

This represents the angle γ, the angle from which the pole starts retracting with the ground-
avoidance approach, as a function of the maximum possible speed of the pole, the rotation
speed of the sphere ω, and the radius of the sphere. If the computational power is limited, this
equation is linearizable, but as the working points will differ, this needs to be done for every
robot when implemented. To avoid contact with the ground due to slight changes of ω, k is
calculated with a safety factor if the implementation shows ground contact on the leverage side.
Then, the maximum velocity is assumed a little slower, leading to the retraction speed being
faster than needed. As l̇x,max goes linear into k, taking just a percentage of k will have this effect.

Therefore, it is advised for practical implementation to use k = 0.99−l̇x,max

r·ω where 0.99 reduces
the assumed maximum speed and thus leads to a smaller γ, which will resolve uncertainties in
the calculation. Alternatively, γ decreases manually, but as the maximum speed and contact
point behavior is not linear, this is not advised. Having found γ, we back-calculated the angle
at which the retraction needs to start. Let ǫ be the angle at which retraction must start, for the
pole to be as near to the ground as possible without touching it at the angle γ, then

ǫ = γ − ω ·
lx,max −

(

r
cos(γ) − r

)

l̇x,max

. (4.12)

Figure 4.5 visualizes the overall behavior of retraction with focus on the angle γ, assuming a
finite maximum retraction velocity. It is shown that complete retraction at a ζ of 2π, at is own
is an insufficient condition for the collision avoidance, as the blue line fulfills this criterion, but
still is above the red line, i.e., collision. With a known γ, the angle at which retraction must
start can be calculated, ensuring always to avoid contact with the ground. Once reaching γ,
it is up to the implementation, if the retraction shall be done at full speed or always have a
maximum possible extension at an adapted speed. If the resulting ǫ is smaller than 1.5π rad,
the initial extension needs to be carried out before reaching π rad to achieve at least once full
extension before retraction. There will still be a leverage effect as weight is shifted to the right
side of the sphere. Figure 4.6a highlights this behavior, of an extension start at an angle smaller
than 1.5π rad.
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Figure 4.5: Visualization of pole retraction when using the leverage approach. The red line symbolizes
the allowed length of extension of the pole without touching the ground. If a point lies in the area above
this red line, this indicates collision with the ground. The straight lines show the length of the pole when
extending and starting too late (blue) or just at the right time (green), at full possible speed. γ is the
angle at which the required retraction speed becomes slower than the maximum possible retraction speed
for the pole. Therefore, the green dashed line shows the possibility of retraction slower to the end. The
calculation was done for ω = 1 rad/s, a possible retraction speed l̇x,max of 2 m/s and assuming a 1 m radius.

(a)

(b)

Figure 4.6: Left: Leverage approach if π rad < γ < 1.5π rad. This leads to the extension starting
between 0 rad and π rad. This still causes rotation. Right: Visualization of ǫs, ǫ, γ and the relevant area
representing the integration of the overall torque. Blue: Area where torque is generated in the opposite
direction than intended. Orange: Area where torque is generated if the extensions start at π rad. Full
extension is not reached due to the short extension time. Green: Area where torque is generated if the
extension starts at ǫs, in addition to the orange area. Red: Area that both approaches cover.
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Let ǫs be the angle at which extension needs to start to reach full extension once at ǫ, then

ǫs = ǫ− ω · lx,max

l̇x,max

. (4.13)

This raises the question of whether this is counterproductive in comparison to an extension
starting at π rad, not reaching full extension but at least not creating leverage on the wrong
side. The more detailed physical representation of the robot will be derived in Subsection 4.1.3.
However, for the evaluation, if the assumption of an ǫs is valid, we anticipate that a single mass
point at distance r(ζ) introduces a torque τ of

τ = r(ζ) · (− sin(ζ)) · q , (4.14)

where q is a constant that will be specified in Subsection 4.1.3. Thus, we integrate the torque
generated by one pole over the process of one rotation. Figure 4.6b visualizes the described angles
γ,ǫ, and ǫs. Also, it visualizes the integration areas where torque is generated. We integrate τ
from Equation (4.14), leading to

τ =
∫ 2π

0
r(ζ) · ((− sin(ζ))) · q dζ . (4.15)

If we start extending at π, hence ignoring the calculated values for the extension end retraction
of ǫs and ǫ, this leads to

τπ =
∫ 2π

π
r(ζ) · (− sin(ζ)) · q dζ (4.16)

⇔
τπ =

∫ 1.5π

π
r(ζ) · (− sin(ζ)) · q dζ +

∫ γ

1.5π
r(ζ) · (− sin(ζ)) · q dζ

+
∫ 2π

γ
r(ζ) · (− sin(ζ)) · q dζ

(4.17)

⇔
τπ =

∫ 1.5π

π
l̇max · (ζ − π) · (− sin(ζ)) · q dζ +

∫ γ

1.5π
l̇max · (π − ζ) · (− sin(ζ)) · q dζ

+
∫ 2π

γ
(

r

cos(ζ)
− r) · (− sin(ζ)) · q dζ

(4.18)

Here, we made one simplification, assuming that the retraction starts from 1.5π rad. This will
always lead to less torque than in reality as the decreased speed of the retraction from γ will
result in an overall less extension in the first part. Therefore, this is a pessimistic estimation. If
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we take ǫs as the starting point, also using the 1.5π assumption, this leads to

τǫs =
∫ ǫ

ǫs

r(ζ) · ((− sin(ζ))) · q dζ +
∫ 1.5π

ǫ
r(ζ) · (− sin(ζ)) · q dζ

+
∫ γ

1.5π
r(ζ) · (− sin(ζ)) · q dζ +

∫ 2π

γ
l̇max(ζ − ǫ) · (− sin(ζ)) · q dζ

(4.19)

⇔

τǫs =
∫ ǫ

ǫs

l̇max(ζ − ǫs) · ((− sin(ζ))) · q dζ

+
∫ 1.5π

ǫ
((ǫ− ǫs)l̇max − l̇max · (ζ − ǫ))) · (− sin(ζ)) · q dζ

+
∫ γ

1.5π
l̇max · (π − ζ) · (− sin(ζ)) · q dζ

+
∫ 2π

γ
(

r

cos(ζ)
− r) · (− sin(ζ)) · q dζ .

(4.20)

The hypothesis is that Equation (4.20), calculating τπ, is less than or equal to Equation (4.18),
calculating τǫs . Therefore, we set

τπ ≤ τǫs (4.21)

⇔

∫ 1.5π

π
l̇max · (ζ − π) · (− sin(ζ)) · q dζ +

∫ γ

1.5π
l̇max · (π − ζ) · (− sin(ζ)) · q dζ

+
∫ 2π

γ
(

r

cos(ζ)
− r) · (− sin(ζ)) · q dζ

≤
∫ ǫ

ǫs

l̇max(ζ − ǫs) · ((− sin(ζ))) · q dζ +
∫ 1.5π

ǫ
((ǫ− ǫs)l̇max − l̇max · (ζ − ǫ))) · (− sin(ζ)) · q dζ

+
∫ γ

1.5π
l̇max · (π − ζ) · (− sin(ζ)) · q dζ +

∫ 2π

γ
(

r

cos(ζ)
− r) · (− sin(ζ)) · q dζ .

(4.22)

And, if we ignore all angles starting from 1.5π rad, it results in
∫ 1.5π

π
l̇max · (ζ − π) · (− sin(ζ)) · q dζ

≤
∫ ǫ

ǫs

l̇max(ζ − ǫs) · ((− sin(ζ))) · q dζ +
∫ 1.5π

ǫ
((ǫ− ǫs)l̇max − l̇max · (ζ − ǫ))) · (− sin(ζ)) · q dζ .

(4.23)

Solving this numerically gives a valid range of 1.11π < ǫ ≤ 1.5π. Hence, the previously stated
hypothesis is false. It is not always beneficial to use an ǫs start rather than the π rad start,
whereas it is the case if epsilon is greater than 1.11π rad. Evaluating the right side of Equa-
tion (4.23) shows a maximum at ǫ = 1.31π rad. Previously, we simplified the starting point
of the retraction as 1.5π rad, which we need to evaluate as the hypothesis was not confirmed.
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However, with the new knowledge of a maximum, we can cut short the long and complicated
integration of γ by specifying the upper limit for integration as 1.5π− γ

2 . Starting retraction at
1.5π − γ

2 leads to full retraction at γ. Therefore, this is the absolute worst case, but this time,
for the ǫs approach, as the angle until which is integrated on the right side decreases. Therefore,
the positive torque also decreases. At the same time, the counterproductive torque on the left
side stays the same. Repeating all the previous steps from Equation (4.18) onwards, we get

∫ 1.5π−
γ

2

π
l̇max · (ζ − π) · (− sin(ζ)) · q dζ

≤
∫ ǫ

ǫs

l̇max(ζ − ǫs) · ((− sin(ζ))) · q dζ +
∫ 1.5π−

γ

2

ǫ
((ǫ− ǫs)l̇max − l̇max · (ζ − ǫ))) · (− sin(ζ)) · q dζ .

(4.24)

Inserting the previously found ǫ = 1.31π rad and numerically solving for γ lead to no solution
within the logical range of 1.5π rad to 2π rad. Therefore, we found a value for π < ǫ <= 1.5π rad,
which will always be beneficial in comparison to a start of the extension at π, for any γ. This
leads to an alternative definition of ǫ as it was initially defined as the angle the retraction
needs to start for reaching γ in time. With this evaluation, we showed that it is beneficial to
always have the maximum extension at a certain ǫ. Note that the said maximum extension
does not necessarily refer to lmax. It describes that if a full extension is not possible with a
start at π, the extension should start at ǫs; therefore, it is not guaranteed that lmax is reached
at ǫ, as it cannot be retracted in time before reaching γ. This leads to the conclusion that we
cannot calculate ǫs by just factoring in the time needed for full extension. In fact, we need to
calculate an extension of the poles that can be retracted between ǫ and 2π rad. From ǫ to γ, the
retraction happens with full speed and from γ to 2π rad with a reduced speed. There certainly
exists a solution for ǫs. However, in our opinion, this goes into directions where the benefit for
practical implementation does not hold up to the required computational power and the needed
precision of all actions. For the prototype introduced later, this is not even possible as there is
no feedback on the pole length. Therefore, we conclude that if the combination of pole length,
the retraction speed of the pole, and the desired rotation speed are in a relevant range, and the
feedback on the exact extension length is given, we implement the adapted ǫ mechanism. At
each calculation cycle, we determine the new γ; on the basis of this, we find the maximum of
Equation (4.24), giving us the optimal ǫ, which is then used to calculate the needed ǫs. In the
further evaluation, we refer to this step just as "calculate γ, ǫ, and ǫs." It is incumbent on the
actual robot and the requirement if certain described adaptions are made. Therefore, we also
ignore these values if the retraction speed is always fast enough to retract in time (γ = 1.5 rad).
For the vast majority of all implementations, this will be sufficient and reduces complexity to
a minimum. Algorithm 5 shows the pseudo-code for a push and leverage algorithm, taking all
these parameters into account.

The code presented in Listing A.1 simulates the extension of a single rod for given parameters.
The ω is assumed to be held constant as a force simulation is too high depending on the actuators
and behaviors, which would go far beyond the scope of this thesis. Subsection 4.1.3 contains
the derivation of general forces and their interaction. Therefore, the ω can be adjusted, even
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Algorithm 5: Leverage and Push Movement Algorithm with detailed boundaries and
limitations.

while true do
calculate γ, ǫ and ǫs
foreach pole in poles do

predict ζ with measured ω and commanded cω

if β ≤ ζ ≤ α then
extend pole

else if retraction speed > maximum retraction speed needed then

if ζ > π and no contact to ground then
extend pole

else
retract pole (ground avoidance mode)

end

else if ζ > γ then
retract pole (ground avoidance mode)

else if (ζ > ǫs or ζ > π) and ζ > α then
extend pole

else
retract pole

end

end

end

during execution, but we assume that the leverage and force applied are enough to generate this
ω. The resulting output includes two figures. The first one is a time-based Cartesian coordinate
system, where the x-axis is the elapsed time, and the y-axis shows the extension of the pole, the
maximum possible extension at a particular moment, and the angle of the pole at that moment.
The second one is an angle-based polar coordinate system. The angle in the plot represents the
angle of the pole. It is not time-dependent. Figure 4.7 explains the output figure, and Figure 4.8
shows the exemplary results.
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Figure 4.7: Explanation of the output of the pole-simulation. The shown movement is one rotation with
the combined push and leverage approach. Left: Cartesian coordinate time-based system. The x-axis
is the elapsed time, and the y-axis shows the extension of the pole (blue line), the maximum possible
extension at a particular moment (dashed blue line), and the angle of the pole at that moment (orange
line). Right: Polar coordinate angle-based system. The angle in the plot represents the angle of the pole
(orange). The extension is shown for the specific angle (blue line). It does not show information on time.

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



38 Chapter 4. Approach

 = 57o,  = 2o,  = 1rad/s, extension speed = 2m/s, radius = 2m, l
max

 = 3m

0 2 4 6 8

time in s

0

0.5

1

1.5

2

2.5

3

E
x
te

n
s
io

n
 i
n
 m

0

0.5 

1.5 

2 

 i
n
 r

a
d

extension of pole

possible extension

0

0.5 1.5 
ha

lf 
ex

te
ns

io
n

fu
ll 
ex

te
ns

io
n

 = 57o,  = 2o,  = 1rad/s, extension speed = 10m/s, radius = 2m, l
max

 = 3m

0 2 4 6 8

time in s

0

0.5

1

1.5

2

2.5

3

E
x
te

n
s
io

n
 i
n
 m

0

0.5 

1.5 

2 

 i
n
 r

a
d

extension of pole

possible extension

0

0.5 1.5 
ha

lf 
ex

te
ns

io
n

fu
ll 
ex

te
ns

io
n

 = 67o,  = 2o,  = 1rad/s, extension speed = 1m/s, radius = 1m, l
max

 = 2m

0 2 4 6 8

time in s

0

0.5

1

1.5

2

E
x
te

n
s
io

n
 i
n
 m

0

0.5 

1.5 

2 

 i
n
 r

a
d

extension of pole

possible extension

0

0.5 1.5 
ha

lf 
ex

te
ns

io
n

fu
ll 
ex

te
ns

io
n

 = 67o,  = 2o,  = 1rad/s, extension speed = 2m/s, radius = 1m, l
max

 = 2m

0 2 4 6 8

time in s

0

0.5

1

1.5

2

E
x
te

n
s
io

n
 i
n
 m

0

0.5 

1.5 

2 

 i
n
 r

a
d

extension of pole

possible extension

0

0.5 1.5 
ha

lf 
ex

te
ns

io
n

fu
ll 
ex

te
ns

io
n

Figure 4.8: Simulation of the extension of one specific rod with the stated parameters, while using the
push and leverage approach. The ω was held constant.
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Figure 4.9: Above: The rotation speed of a sphere, assuming a 1 m radius, for different α and different
constant l̇x. β is chosen 2◦. Below: The rolled distance of the same sphere setup. Due to the constant
l̇x, this visualizes the mono-speed problem. The same extension speed of the pole at small angles near β
results in faster rotations of the sphere than for poles at larger angles towards α. Therefore, the spikes
of high rotation speeds occur each time a pole starts extending at β. As the angle of the pole increases
until α, the rotation speed decreases.

4.1.2 Mono-Speed Problem

As shown in Equation (4.5), the maximum achievable rotation speed depends on the maximum
possible extension speed of the rod and the chosen α, which again depends on the desired number
of rods pushing simultaneously and the chosen β. All this implies a continuously controllable
speed of the individual rods.

Nevertheless, this assumption might not be valid for the technical realizations of a TLDR
robot. The simple versions of electric as well as linear hydraulic motors often do not have speed
control. With increasing ζ, the needed speed and acceleration of the rod is not always possible.
It is impossible to have more than one mono-speed-rod actively pushing, as the next rod needed
to extend faster than the one nearest to 0 degrees. Also, a constant ω is not possible with a
finite n. Considering Equation (4.4) for a constant l̇x, and the changing rotation speed of the
sphere shown in Figure 4.9, results in a rolled distance, as shown in the same figure.

These calculations are based on the simplified idea of a rod extending, leading directly to
rotation. This means the rod has an infinite amount of force. However, this does not apply
to real-world actuators. Motors can touch the ground and start trying to extend themselves,
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applying force. If this force is not sufficient to overcome the moment of inertia of the sphere,
there will be no extension. Depending on the actual actuator, this might or might not be a
problem that is damaging to the motor. Subsection 5.2.1 highlights this discussion in detail.
This behavior gives the mono-speed approach the possibility of more than one pole actively
touching the ground to generate torque. The second pole is not needed for the rotation if one
pole has enough power to cause the rotation of the whole sphere, at such a fast pace that the
next pole is not even able to extend into the ground. This is especially the case if the initial
pushing angle is relatively small. Therefore, the following assumptions are always from the point
of view that one pole is not enough to generate a fluent rotation of the sphere with an acceptable
speed. Looking at Figure 4.4, one can notice a plateau in the middle with a rather steep pitch
at the beginning and end.

In the first part, it is rather unlikely that the rod will have enough force to achieve rotation.
This may lead to the aforementioned damage. Approaching 0.5π, the needed velocity of pole
approaches infinity, which is not realistic and delays or slows down the rotation. Therefore,
the range from approximately 0.01π rad to 0.4π rad is chosen for this paper as a useful range
for extending mono-speed poles. The difference between them still has exponential growth, as
Figure 4.4 has a logarithmic scale, but after 0.4π rad, this only gets steeper. For the leverage
approach, the evaluation for mono speed is more straightforward. There still exists a γ at which
the speed of the pole l̇x = l̇x_max matches the exact speed to avoid the ground. Therefore, there
is still an ǫ at which retraction needs to start at full speed (the only available speed) to reach
γ. Also, the angle ǫs still exists to get a full extension at ǫ, and if ǫs > π rad, the extension
after π rad is done anyways at full speed. Therefore, only the retraction after ǫ differs from
the non-mono approach. Figure 4.10 depicts the difference between the mono-speed behavior
and the stepless one. To display the impact on the used scale, we set the stimulation frequency
from 100 Hz to 20 Hz. It has a kind of aliasing effect as the continuous change of the possible
length must be matched with just the one available speed. This means the desired length must
be matched with possible changes of ± l̇x_max

f , where f is the frequency of calculation or of the
communication to the actuator. It still happens at faster frequencies, but the errors are smaller
and hence not as visible as with lower frequencies.

Figure 4.9 represents the change in the rotation speed. This causes problems for the calcu-
lation of retraction speed for the leverage approach if we assume the simplified idea that the
extension of a rod directly leads to rotation. To show this, we extended the simulation not
to have a constant ω, but rather, the ω was calculated by rotation speed resulting from the
rod extension. The acceleration of ω was limited, as even with receiving a high force from the
poles, there is a physical limitation in terms of acceleration. Therefore, the simulation code of
Listing A.1 is extended by the function shown in Listing A.2. Figure 4.11 provides the result
for a limitation of 1 rad/s2 and 10 rad/s2.

It becomes evident that higher possible rotation accelerations of the sphere result in problems
as the changing ω leads to changing γ and ǫ. At some moments, the ω is so high that the pole
starts extending as it has already reached or passed ǫ. As the ω slows down, ǫ grows. Therefore,
the pole that was extending just before, starts retracting since its angle is now a smaller ǫ.
This behavior is noted in the simulation with a maximum ω̇ of 10 rad/s2. The simulation with a
maximum ω̇ of 1 rad/s2 does not show this behavior as ω does not reach such high values due to
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Figure 4.10: Simulation of the extension of one specific rod with the stated parameters, slowed down
from 100 Hz to 20 Hz, for an actuator with mono speed (above) and a stepless controllable one (below).
The push and leverage approach is used. The mono-speed pole shows a stepped behavior, whereas the
variable speed matches the possible extension rather well.

the limited acceleration. To solve this problem, there are several avoidance mechanisms:

• If a higher β is chosen, the problematic high ω is not generated.

• Measuring for the robot the fastest possible ω and calculating γ and ǫ with this value.

• If the behavior is fully unknown, ensuring the pole is fully retracted at the angle at which
a full extension has ground contact, avoids the whole problem.

• An on-board simulation calculates all the angles at which the pole does not achieve the
required velocity.

Overall, higher possible accelerations lead to problems for robots that are relatively lightweight
in comparison to their possible extension power. Then, the avoidance mechanism of this behavior
needs to be implemented. Also, the ground on which the robot moves influences this behavior,
as we will see in the evaluation.
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Figure 4.11: Simulation of the extension of one specific rod with the stated parameters, with ω calculated
based on the extraction of the poles. This assumes an infinite force of the poles. The push and leverage
approach is used. ω̇ is limited to 1 rad/s2 (above) and to 10 rad/s2(below). With a too high allowed ωs, ǫ
and ǫs change so fast such that the angle of the pole is larger than ǫs at one moment and smaller in the
next, leading the short extension and retraction spikes.
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Figure 4.12: Force evaluation of the pushing approach with no slip due to an obstacle.

4.1.3 Physical Representation

Having described the geometrical constraints regarding the basic structure in Subsection 4.1.1,
we now want to evaluate the fundamental physical interactions of the TLDR robot. This eval-
uation is based on [15, 29, 38, 62], and [30], which mostly deal with the integration of friction
into the analysis of a rolling spheroid. This physical evaluation will help identify the limitations
of the prototype and its requirements. In the following, we will evaluate the pushing approach
with and without slip as well as the leverage approach in terms of their physical representation.

Pushing with no slip

First, we look at the simplest case: pushing with no slip at the pole end. Here, we assume
an obstacle at the end of the actively pushing pole. This prohibits every slip of the pole.
Figure 4.12 shows the simplified forces in this case. We focus on the direct force interaction of
the pole and the robot. Forces like air resistance, sinking in due to the softness of the ground,
etc., are neglected. As the pole pushes with F P against the ground and non-moving obstacle,
the counterforce F

′

p acts at the middle of the robot and has the two components F r and F n,
which can be calculated by

F
′

p = F
′

p ·
[

sin(ζ)

cos(ζ)

]

=

[

F
′

r

Fn

]

. (4.25)

The vertical F r is directly countered by the gravity F g. The difference between F g and F r is
compensated by the structural force F s. If F r is larger than F g, the sphere starts to accelerate
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in the vertical direction. The horizontal force F n is countered by the frictional force F f . Let
µrs be the sum of the friction coefficient µs of the robot and surface, and the rolling friction
coefficient cr, which depends on how much the specific structure sinks into the surface due to
its own weight. Then, F f is defined as

F f = µrs · (−F n) . (4.26)

Note that µrs is chiefly determined experimentally. We will often assume it to be 1, which means
a good grip with no slip. The difference between F f and F n, which is always in the direction
of F n as µrs is between zero and one, leads to the translation of the sphere. Let adirect be the
acceleration of this direct translation without translation, and m be the mass of the robot, then

adirect =
Fn − Ff

m
=
Fn · (1 − µrs)

m
(4.27)

Let τ f be the torque generated by F f , and r be the position vector of the acting point of F f ,
then

τ f = r × F f (4.28)

τf = rm · Ff . (4.29)

Let I be the moment of inertia of the sphere and ω̇ the acceleration of the angular velocity, then

ω̇ =
τf

I
. (4.30)

I depends on the mass, shape, and mass distribution of the robot. For a massive sphere, this is
2
5mr

2, but the length of extension of the pole needs to be considered as it changes the moment
of inertia, even in this case. Also, if the robot is not built perfectly balanced, I has different
values for each rotation axis. Therefore, it actually is a tensor, i.e., 3x3 matrix. With mechanical
simulations or experiments, this tensor is determinable. We will refer to it as general I.

The initiated rotation and the translation by sliding cause the rolling of the robot. The
translation consists of not only the direct linear slip but also the rotation-initiated translation
in the form of

arotation = 2π · rm · ω̇ . (4.31)

This leads to the overall system. Let a be the overall acceleration of the robot in the vertical
direction (so adirect + arotation), ω̇ the angular acceleration, and m the mass of the robot, then

[

a

ω̇

]

=

[

sin(ζ)·Fp·(1−µrs)
m + 2π · r2

m · µrs · sin(ζ) · Fp · I−1

rm · µrs · sin(ζ) · Fp · I−1

]

. (4.32)

For the case where there is no slip, µrs = 1, so we get
[

a

ω̇

]

=

[

2π · r2
m · sin(ζ) · Fp · I−1

rm · sin(ζ) · Fp · I−1

]

=

[

2π · rm · ω̇
rm · sin(ζ) · Fp · I−1

]

. (4.33)

Note that as ω̇ = ζ̈, this is a second-order nonlinear differential equation. For the evaluation,
we assume rm·Fp

I to be constant and refer to it as constant A. Solving it analytically gives the
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Figure 4.13: Analytical solution of Equation (4.33). Above: Solution for A = 10. Below: Solution for
A = 0.15.

result shown in Figure 4.13, once for a high factor A = 10 and once for the factor A = 0.15,
which is the magnitude of the later-introduced prototype.

As expected, with an increasing ζ, the angular velocity also raises. The plot cannot be seen
as a direct representation of the actual ζ as this implies an obstacle that is at the assumed
distance, which moves with the extending pole and counters the force perfectly. This is why we
assumed a linear ω for the mathematical representation. However, even if that case occurs, the
resulting angular velocity has a limit, defined by the pole length and extension speed. Taking
the speed and ζ limitations of Equations (4.8) and (4.7) and comparing them with the solution
of the force equation show that the theoretical introducible speed as per the force calculation
exceeds what is geometrically possible. Figure 4.14 visualizes this.

The larger ζ becomes, the slower the maximum ζ̇ can be up to the point where the maximum
possible length of the pole lmax limits the reachable θ. In the shown calculation, the configuration
with the fastest l̇ does indeed cut the force calculation at the vertical transition to 0 rad, which
means that in this case, the length was the limit. Combining the geometrical and physical
behaviors shows the overall problem of the system. These both influences do not just limit each
other or reinforce each other. The symbiosis of both leads to a system that is hard to predict.
The following are two exemplary reasons for it:

• A pole jumps over the ground until it finds an obstacle or reaches a certain level of bending.

• A rotation that leads to an extension of the pole in the air without ground contact initiates
leverage in the other direction than intended.
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Figure 4.14: Analytical solution of Equation (4.33) with A = 0.15 and the geometrical possible ζ̇s with
a radius of 0.4 m and a maximum length of 0.1 m. The force solution is limited by either the extension
speed or the sheer fact that the pole length is not long enough to reach ζ

Because of these, the starting ω of each pole at ζ = α will always be different.
Overall, this thesis will not provide a complete solution to the whole system. It focuses

on evaluations for general limitations and dimensioning components. Therefore, the further
evaluations and their resulting differential equations will not be solved as the acceleration at a
given ζ is the only value of interest.

Pushing with slip

The subsequent evaluation is for the situation in which there is no obstacle at the end of the
pole. This not only changes the counterforce from the pole applied on the sphere but also
another component, the lever. This does not mean it is the leverage approach, where the
poles are extended on the side of the robot towards which it is to roll. This is evaluated
separately in Subsubsection 4.1.3. However, we consider a ground with no friction so that the
pole will extend and touch the ground; however, rather than that the applied force being directly
countered by the ground, the pole slips to the side. This is comparable to a person trying to
push himself/herself while standing on ice only using a pole with a big flat surface. When trying
to push himself/herself, the pole will slide over the ice surface, but the person will not move.
The sphere generates no translation on a friction-less surface, but it has the ability to initiate
rotation. Figure 4.15 illustrates the working forces for this. Like before, the starting point is
the force of the pole F p. It pushes into the ground at the angle ζ, which splits it up into parts,
the force in the slip direction F s and the force toward the ground F r. F p splits as

F p = Fp ·
[

cos(ζ)

sin(ζ)

]

=

[

Fr

Fs

]

. (4.34)
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Figure 4.15: Force evaluation of the pushing approach with a complete slip of the poles.

Like with the obstacle, F r is countered by the ground itself, producing −F r. The difference is
the arising F s, which was previously countered by the obstacle, hence becoming F n, but it now
has no counterpart. This creates an acceleration of the pole tip in this direction. However, the
point is part of a whole structure, and because of this, F s results in the lever force, perpendicular
to the line of the pole, F e. The amount is determined by

Fe = cos(ζ) · Fs (4.35)

Let τe be the torque generated by force F e, then

τ e = r × F e (4.36)

τe = (l(ζ) + rm) · Fe . (4.37)

Let I be the moment of inertia of the sphere and ω̇ the acceleration of the angular velocity, then

ω̇ =
τe

I
= (l(ζ) + rm) · Fe · I−1 . (4.38)

For l(ζ), we can use Equation (4.2). This leads to

[

a

ω̇

]

=





0

( rm

cos(ζ)) · Fe · I−1



 . (4.39)

In this case, there is neither a adirect nor a arotation due to the lack of grip at the bottom of
the sphere, causing full rotation and no translation. The next evaluation is the combination
of the two previous systems (with and without friction), introducing a variable friction force.
Figure 4.16 depicts this concept. The horizontal force F s, which arises from F p, is now countered
by the frictional force F f , resulting in the friction between the pole end and the ground. This
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Figure 4.16: Force evaluation of the pushing approach with variable friction applied at the pole ends.

force does not necessarily counter F s completely; it depends on the static friction coefficient
µsPole. Therefore

Ff = µsPole · Fs = µsPole · sin(ζ) · Fp . (4.40)

The lever force Fe at the end of the pole is now determined from the combination of both leading
to

Fe = cos(ζ) · (Fs − Ff ) = cos(ζ) · Fs(1 − µsPole) . (4.41)

The force F f also acts at the middle of the sphere, just like in the evaluation with the obstacle.
Similarly, it is countered by the frictional force at the contact point of the sphere and ground
F ′

f . This depends now on µrs as the rotational resistance is applied here, which leads to

F ′

f = µrsFf = µrs · µsPole · Fs . (4.42)

The difference Ff − F ′

f results in adirect like in Equation (4.27),

adirect =
Ff − F ′

f

m
=

(1 − µrs) · µsPole · Fs

m
(4.43)

Also, arotation applies like in Equation (4.31). However, in this case, the ω differs as there is not
only the torque τf from Equation (4.29) or τe from Equation (4.29) but in fact both. Let τfe be
the overall torque working on the sphere. Using Equations 4.41 and 4.42, we get

τfe = τf ′ + τe = F ′

f · rm + Fe · cos(ζ)
rm

(4.44)

= µrs · µsPole · Fs · rm + cos(ζ)2 · Fs(1 − µsPole) · 1
rm

. (4.45)

This then produces a change in angular velocity,

ω̇ =
τfe

I
. (4.46)
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In this case, arotation is not merely taken as the surpassed scope of the robot as the whole
length is not directly translated to the ground. As µrs = 0 means just slipping with no rotation
being transferred to translation, and µrs = 1 means that the whole scope is also reached as
translation, we take the friction coefficient as a linear transition between these two points.
This is an approximation as the real relation between the friction coefficient, rolling resistance
coefficient, and the generated horizontal linear acceleration from rotation may not be completely
linear. Nonetheless, for the precision aimed at this point, it is still approximated as linear [23].
Therefore, arotation becomes

arotation = µrs2 · π · rm · τfe

I
(4.47)

= µrs · 2π · r2
m · Fs · I−1 · (µrs · µsPole · +cos(ζ)2(1 − µsPole) · 1

r2
m

) (4.48)

The overall system is the combination of the acceleration of translation (a) and rotation ω̇,
which give

[

a

ω̇

]

=

[

arotation + adirect
τfe

I

]

= (4.49)

[

µrs · 2π · Fs · I−1 · (µrs · µsPole · r2
m + cos(ζ)2(1 − µsPole) · + (1−µrs)·µsPole·Fs

m

µrs · µsPole · Fs · rm + cos(ζ)2 · Fs(1 − µsPole) · 1
rm

· I−1

]

. (4.50)

Inserting the Equation (4.34) leads to

[

a

ω̇

]

=





sin(ζ) · Fp ·
(

µrs · 2π · I−1 · (µrs · µsPole · r2
m · +cos(ζ)2(1 − µsPole)) + (1−µrs)·µsPole

m

)

sin(ζ)
(

µrs · µsPole · Fp · rm + cos(ζ)2 · Fp · (1 − µsPole) · 1
rm

· I−1
)



 .

(4.51)
For now, we only looked at the horizontal component of a as the gravitational force counters
the vertical force. There certainly exists the possibility that the vertical force exceeds the
gravitational force. In that case, a vertical, linear acceleration will take place, driven by the
resulting force. The resulting vertical force is not considered negative as the force difference
between the vertical initiated and gravitational force is countered by the structural force Fs.
Let av be the vertical acceleration of the robot and Θ(x) the unit step size function, then

av =
Θ(FR − FG)(FR − FG)

m
=

Θ(cos(ζ) · Fp −m · g)(cos(ζ) · Fp −m · g)
m

= Θ(cos(ζ) · Fp/m− g)(cos(ζ) · Fp/m− g) . (4.52)

Referring to a in Equation (4.51) as ah as it is the horizontal acceleration and inserting Equa-
tion (4.52) give








av

ah

ω̇









=









Θ(cos(ζ) · Fp/m− g)(cos(ζ) · Fp/m− g)

sin(ζ) · Fp ·
(

µrs · 2π · I−1 · (µrs · µsPole · r2
m · +cos(ζ)2(1 − µsPole)) + (1−µrs)·µsPole

m

)

sin(ζ)
(

µrs · µsPole · Fp · rm + cos(ζ)2 · Fp · (1 − µsPole) · 1
rm

· I−1
)









,

(4.53)
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Figure 4.17: Force evaluation of the leverage approach.

which is the final solution for the introduced model using the pushing approach for locomo-
tion. We can derive the following trivial behaviors:

• Setting µrs and µsPole to one, i.e., full friction and no slip, gives the Equation (4.33).

• Setting µrs and µsPole to zero, i.e., no friction and only slip, gives the Equation (4.39).

• At a ζ of 0 rad, there is neither rotation nor horizontal translation but only vertical move-
ment as we push straight upwards.

• µrs and µsPole play a crucial role as they influence most parts of the final system represen-
tation as square.

Leverage

The last part is the physical evaluation of the leverage approach. Figure 4.17 shows the acting
forces. All extended poles are reduced to a point mass at which the gravitational force F g acts.
This force is split up into a normal force Fn, perpendicular to the axis of midpoint and center
of mass point (with only one pole, this axis is identical with the pole axis), and the force Fr,
perpendicular to it. The splitting is done as follows:

F g = Fg ·
[

− cos(ζ)

− sin(ζ)

]

=

[

Fr

Fn

]

. (4.54)
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Let τ n be the torque, initiated by F n, and rc be the vector from the center of the sphere to the
single mass point of the poles, then

τ n = rc × F n

τn = rc · Fn . (4.55)

However, this is not the only acting torque. F r acts at the midpoint of the sphere and is split
into F r1 and F r2 by

F r = Fr ·
[

− cos(ζ)

− sin(ζ)

]

=

[

Fr1

Fr2

]

. (4.56)

Fr2 introduces a frictional force Ffr2 at the bottom of the sphere, which adds another torque to
the sphere. Let τfr2 be the force introduced by the frictional force Ffr2, then

τfr2 = rm · Ffr2 = rm · µrs · Fr2 = rm · µrs · sin(ζ) cos(ζ)Fg = rm · µrs · sin(2ζ)
2

Fg . (4.57)

The difference between the two torques is the resulting torque τr,

τr = τn − τfr2 = rc · (− sin(ζ)) · Fg − rm · µrs · sin(ζ) cos(ζ)Fg

= −Fg (rc · sin(ζ) + rm · µrs · sin(ζ) cos(ζ))
. (4.58)

We can prove that the leverage algorithm produces no torque in the opposite direction of the
intended movement because of the following:

• rc > rm > 0

• π > ζ < 2π leads to sin(ζ) < sin(ζ) cos(ζ) and sin(ζ) < 0

• 0 ≥ µrs ≤ 1.

Therefore, rc · sin(ζ) will be negative and always be smaller than rm · µrs · sin(ζ) cos(ζ), which
leads with the multiplication of −Fg to an overall positive torque. The initiated rotational
acceleration is therefore given by

ω̇ =
τr

I
= − sin(ζ) · Fg · I−1 · (rc + rm · µrs · cos(ζ)) . (4.59)

Fr1 is directly countered by the structural force of the robot. The part of Fr2, which is not
countered by the friction force, causes direct horizontal translation. This acceleration is negative,
as the acceleration is pointed in the opposite direction then intended.

ahdirect = −Fr2 − µrsFr2

mrobot
= −sin(ζ) cos(ζ)Fg(1 − µrs)

mrobot
= sin(ζ) cos(ζ)g(µrs − 1) · mlever

mrobot
(4.60)

Also, the rotation initiates a horizontal translation, depending on µrs like in Equation (4.48),
with

ahrotation = µrs · 2π · ω = µrs · 2π · (− sin(ζ)) · Fg · I−1 · (rc + rm · µrs · cos(ζ)) (4.61)
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With the leverage approach for locomotion, there is no possibility for a vertical acceleration,
setting av to zero. The moment of inertia I is again taken as constant, as with the pushing
approach, for simplification. Depending on the configuration of the robot and the weight and
length of the poles, the I changes during the movement process in non-negligible ways. In these
cases, I needs to be made dependent on ζ, thus making it the function I(ζ). We will stay on I
for further evaluation. With this, we set up the overall system:








av

ah

ω̇









=









0

sin(ζ) cos(ζ) · g · (µrs − 1) · mlever

mrobot
+ µrs · 2π · (− sin(ζ)) · Fg · I−1 · (rc + rm · µrs · cos(ζ))

− sin(ζ) · Fg · I−1 · (rc + rm · µrs · cos(ζ))









=









0

sin(ζ) · g ·mlever ·
(

cos(ζ)(µrs − 1) · 1
mrobot

− µrs · 2π · I−1 · (rc + rm · µrs · cos(ζ))
)

− sin(ζ) · Fg · I−1 · (rc + rm · µrs · cos(ζ))









.

(4.62)

It is evident that ω̇ is always positive (ignoring the trivial solutions for rc = rm = 0, etc.) if ζ
is between π rad and 2π rad. For the horizontal velocity, determining this is not trivial as for
a ζ between π rad and 2π rad, ahrotational and ahdirect are in opposite directions. Therefore, we
evaluate

0 ≤ ah

0 ≤ sin(ζ) · g ·mlever ·
(

cos(ζ)(µrs − 1) · 1
mrobot

− µrs · 2π · I−1 · (rc + rm · µrs · cos(ζ))
)

.

(4.63)

We reduce sin(ζ) as it is always negative for the evaluated range of ζ, and g ·mlever is also always
positive, leading to

0 ≥ cos(ζ)(µrs − 1) · 1
mrobot

− µrs · 2π · I−1 · (rc + rm · µrs · cos(ζ))

⇔ µrs · 2π · I−1 · (rc + rm · µrs · cos(ζ)) ≥ cos(ζ)(µrs − 1) · 1
mrobot

. (4.64)

If we set µrs = 1, Equation (4.64) becomes

2π · I−1 · (rc + rm · cos(ζ)) ≥ 0 .

Considering that 2π · I−1 > 0 and that rc is rm plus a length rx dependent on the pole length
and the mass distribution of the poles, we further simplify:

(rc + rm · cos(ζ)) ≥ 0

⇔ cos(ζ) ≥ −rc

rm

⇒ cos(ζ) ≥ −1 >
−(rm + rx)

rm

⇒ cos(ζ) ≥ −1 . (4.65)
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This statement will always be true. Therefore, Equation (4.63) is always fulfilled for µrs = 1.
For the proof that the direction is not always in the direction of desired movement, we use
Equation (4.64) and set µrs = 0, which gives

0 · 2π · I−1 · (rc + rm · 0 · cos(ζ)) ≥ cos(ζ)(0 − 1)

0 ≥ − cos(ζ) · 1
mrobot

. (4.66)

This is true for ζ ≥ 1.5π rad, as 1
mrobot

> 0. For ζ > 1.5π rad, Fr2 changes its sign, leading to
acceleration in the intended direction, therefore an overall acceleration in the opposite direction
is not possible. Still, this leaves the range of π rad < ζ < 1.5π rad. Therefore, we conclude that
not for every value of µrs, ah goes in the intended direction of rotation.

Rearranging Equation (4.64) for µrs, and solving numerically the worst case of ζ gives ζ =
π rad. This means at ζ = π rad we need to evaluate which µrs is required to always have
translation int the right side by leverage. After the rearrangement of Equation (4.64) and
inserting ζ = π rad, we get

µrs ≥
2π · I−1 ·mrobot ·

(√

(2π·I−1
·mrobot·rc)2+2·2π·I−1

·mrobot·rc+4·2π·I−1
·mrobot·rm+1

(2π·I−1
·mrobot)2 + rc

)

+ 1

2 · 2π · I−1 ·mrobot · rm
.

(4.67)
Using the moment of inertia of a solid ball around the rolling axis, assuming a straight path,
I = 2

5 · mrobot · r2
m and some values in the same order of magnitude as the later-introduced

prototype rm = 0.4, rc = 0.9, mrobot = 25, and m = 0.1, leads to a minimum µrs of 0.012.
This means that for a guaranteed translation in the desired direction at all times, we need a
friction coefficient and rolling resistance coefficient of 0.012 in total, which is in the magnitude
of a ground of ice.

So we conclude that if the sphere experiences no slip, the leverage approach will always
generate translation in the intended direction. For each individual prototype, there exists an
µrs < 1 for the same statement, but we are only able to make a worst-case assumption for it.

4.1.4 Braking

For a comprehensive description of the movement of the TLDR robot, we need to discuss the
action of braking. Braking is achieved like all other locomotion actions with the pushing or
leverage approach. To simplify the description of the side of the poles, we will assume, for this
subsection, a rotation to the left, which is braked by poles on the right.

Braking by leverage

The leverage approach is rather straightforward as it shares its critical states or actions with
the movement by leverage, which Subsections 4.1.1 and 4.1.3 describe. In the same way, the
leverage generates rotation using torque for locomotion; it decreases this rotation by torque in
the other direction. Therefore, we need to adapt the concept of Algorithm 3 as the original
algorithm considers no problem when extending poles on the opposite side of the commanded
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rotation. When braking, the angle direction changes as the transition from 0 rad to 2π rad is
always in the direction of the commanded rotation. Depending on the implementation, the
algorithm performs this by changing every ζ (referred to in the pseudo-code as pole.getAngle())
to 2π − ζ and taking this as its own braking algorithm, or by defining the angles depending on
the commanded rolling direction. The retraction needs to occur between π rad and 1.5π rad.
Retracting at full speed is sufficient to avoid collisions as the duration of extension on the other
side of the sphere has been longer. Thus, the adapted Algorithm 3 for braking is shown with
Algorithm 6. It simplifies as there are only two cases, one for extending, one for retracting,
unlike Algorithm 3 that has three.

Algorithm 6: Leverage-Only braking Algorithm

foreach pole in poles do

if pole.getAngle() >= 1.5π then
extend pole (ground avoidance mode)

else
retract pole

end

end

Here begins the discussion of angle limits, just like with the leverage movement algorithm.
There is the possibility to start retraction at angles smaller than 1.5π rad, because the overall
torque is on the right side, even if some poles have not finished their retraction on the left
side. Even a limit of π rad leads to braking. This is valid as the extension on the right does not
always happen at full speed (referred to in Algorithm 6 as "ground avoidance mode"). Therefore,
retraction at full speed on the left side will always have an overall less leverage. According to
the same argument, there exists an angle ǫb between π rad and 1.5π rad at which the retraction
can start and still reach full retraction at π rad.

The discussion, when retracting at this angle or one that leads to a l 6= 0, is the same as for
the leverage movement if it is conducive to extend poles at an ǫs that is less than π rad. We will
not further evaluate this but will use the conclusion derived from Equation (4.24). Therefore,
there exists an angle at which it is always beneficial to start the retraction rather than ensuring
a full retraction at π rad, under the condition that full extension is not possible before reaching
1.5π rad. Let ǫb be this angle and γb the angle at which the extension is as fast as the possible
extension speed without causing ground collision, then

ǫb = γb − ω ·
lmax − ( rm

cos(γb) − rm)

l̇max

. (4.68)

The angle γb is calculated like γ in Equation (4.11),but using the extension speed rather than
the retraction speed. In this case, there is no need for calculating an angle like ǫs as it here refers
to the angle on the left side at which the retraction is finished. This angle exists but is obsolete
as the retraction at either 1.5π rad or ǫb ensures collision avoidance. This leads to Algorithm 7,
for braking with leverage, taking all boundaries into consideration. For this algorithm, there is
no condition if the retraction or extension speed is faster than needed as there is no extension
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Algorithm 7: Leverage-only braking algorithm with detailed boundaries and limita-
tions.

Loop
calculate γb an ǫb
foreach pole in poles do

predict ζ with measured and set ω
if ζ ≥ γb then

extend pole (ground avoidance mode)
else if ζ > ǫb or ζ ≥ 1.5π then

extend pole
else

retract pole
end

end

EndLoop

slow enough to fulfill this requirement, ignoring the trivial case of l̇max = 0 and assuming the
extension is as fast as the retraction.

Braking by pushing

Next, we focus on braking by the pushing approach. For this, the poles on the left side extend
so that they will be in contact with the ground, opposing the ongoing rotation. There are three
main approaches to be discussed:

• Soft brake: Braking slowly with changing pole speeds.

• Hard brake without lift-off: Extending poles before ground contact but not retracting
them. The impact does not lift the robot of the ground.

• Hard brake with lift-off: Extending poles before ground contact but not retracting them.
The impact does lift the robot off the ground to a maximum angle.

The advantage of the hard brakes is the possible massive deceleration compared with that
achieved with the soft brakes. Moreover, the impact on the sphere and payload are accordingly
huge. The hard brake has an even bigger impact with lift-off as the sphere will also fall backward,
leading to a second impact. For the soft brake, the pole needs to extend until the point where
the retraction is faster than the needed retraction once the touchpoint is reached. This was
exactly the definition of γ, which gave Equation (4.11). However, rather than using it to avoid
ground contact by having a superior retraction speed, we use it to force this contact in a
controlled manner. Equation (4.3) gives us the required retraction speed at a certain angle ζ.
An extension near or at 0 rad does not have much impact as the force will just lift the sphere
up. Therefore, we utilize the previously used angle β until which we will retract. Between β
and 0 rad, the pole will retract at full speed, not contributing to the braking. Hence, we need
to specify how much one pole within its γ to β range slows down the overall ω. We refer to this
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value as ∆ω. Let ωstart be the ω at the γ of a specific pole, ωend the desired ω at β of that same
specific pole, and l̇sb(ζ) the pole speed at angle ζ for soft braking, then

l̇sb(γ) = rm · ωstart · tan(γ) · sec(γ) l̇sb(β) = rm · ωend · tan(β) · sec(β) . (4.69)

It is certainly up to the requirements of the specific robot to adapt to the transition between
these two ωs; we will assume a desired linear deceleration. Yet, the linear deceleration of ω does
not lead to a linear change in the retraction speed. Let γ(ωx) be the γ for the specific ωx and
not the current ω, then l̇sb(ζ) is

l̇sb(ζ) = rm ·


ωend +
ωstart − ωend

ζ−β
γ(ωstart)−β



 · tan(ζ) · sec(ζ) . (4.70)

This is the solution for speed-controlled poles, assuming they have been extended at γ to the
maximum possible length. This speed control does not hold true for poles between γ and β at
the moment the braking is commanded. Let lsb(ζ) be the required length at a specific ζ between
γ(ωstart) and β for braking, then

lsb(ζ) =
∫ ζ

γ(ωstart)
rm · (ωend +

ωstart − ωend
ζ−β

γ(ωstart)−β

) · tan(ζ) · sec(ζ) dζ

=
1
2

(rm · ζ · tan(ζ) · sec(ζ))2
(

(γ(ωstart) − β) · (ωstart + ωend)
ζ − β

+ ωend

)2

− γ(ωstart)2

2
+

r

(cos(γ(ωstart)))
. (4.71)

Now, we evaluate the question of a lift-off as there needs to be a speed of the robot that cannot
be compensated in one period of braking (which translates to ωend = 0 rad/s), as the sphere will
take this pole as a lever and start accelerating vertically, like an athlete pole-vaulting. We will
not evaluate this for the worst case with a friction coefficient of µpole of 1. Figure 4.18 illustrates
the occurring forces during braking. As the real system is highly complex and depends on the
bending of the pole, the consistency of the ground, etc., we simplify it for the lift-off evaluation.
We further assume that until the evaluated moment, the braking worked as intended. Therefore,
the braking force Fb is generated by the deceleration achieved by the reduction of ω, as

Fb = m · v̇ = m · rm · ω̇ . (4.72)

The force Fω is countered by the ground and is likely to cause a rotation backward depending
on the poles. However, as we consider the worst for the lift-off, we assume full countering of Fω.
As Fb is not parallel to the pole, but the pole is the axis along which the force is transferred, it
initiates a force perpendicular to Fb, Fl. Fl is given by

Fl = tan(ζ) · Fb . (4.73)

Fl is countered by the gravitational force Fg. To get the maximum possible braking ω, we set

Fl = Fg

tan(ζ) · Fb = m · g
tan(ζ) ·m · rm · ω̇ = m · g . (4.74)
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Figure 4.18: Forces during braking when rolling onto a pole.

Considering t as the elapsed time between ωstart and ωstart and taking into account that we
designed the braking for the linear deceleration of ω, we write

ω̇ =
ωstart − ωend

t
=

ωstart − ωend

(γ(ωstart) − β) /
(

ωstart−ωend

2

) =
(ωstart − ωend)2

2 · (γ(ωstart) − β)
. (4.75)

Inserting this into Equation (4.74) gives

tan(ζ) · rm · (ωstart − ωend)2

2 · (γ(ωstart) − β)
= g . (4.76)

Solving this for ωend, looking at the last angle of relevance, which is ζ = β, and ignoring the
negative solution, we get

ωend =

√

2 · g · (γ(ωstart) − β)
tan(β) · rm

− ωstart . (4.77)

This is the maximum possible ωend to avoid lift-off. If we want to brake completely in one period,
ωend needs to be ≤ 0 rad/s. This holds if

√

2 · g · (γ(ωstart) − β)
tan(β) · rm

≤ ωstart . (4.78)

If needed, one can solve this equation for ωstart to get the maximum possible braking speed for
the minimum possible β. So far, we carried out the evaluation of the slow brake. For the hard
brake, we again start by using Equation (4.74). It is impossible to specify the ω̇ without exact
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knowledge of the robot and, more specifically, its poles. Therefore we set ω̇ = ωstart

t , where the
time constant t of the complete deceleration is highly dependent on the robot. For ζ, we can
set arccos( rm

rm+lmax
), as the maximum possible ζ is beneficial for braking as the lift-off is made

more unlikely. Yet, this leads to increased stress on the poles. We also need to consider the
rotation, which is stopped, as the reduction is not continuous as in the soft brake, but abrupt.
This is only of relevance if the pole gets stuck in the ground, as otherwise, a bounce in the other
direction counters the rotation. So, we assume the worst case that the overall rotational energy
erot = 0.5 · Iω2 is completely transformed into kinetic energy at the right angle ekin = 0.5 ·m ·v2.
Simplifying the structure to a single mass point on a massless pole produces a moment of inertia
I of (rm + lmax)2 ·m. Setting erot = ekin, we get

0.5(rm + lmax)2 ·m · ω2 = 0.5 ·m · v2

v = (rm + lmax) · ω . (4.79)

Therefore, besides Fl, there is the worst case by rotational force Fwcr, defined by

Fwcr = m · v
t

=
(rm + lmax) · ωstart

t
·m. (4.80)

Overall, the hard stop without lift-off is possible if

Fl + Fwcr ≤ Fg

tan(arccos(
rm

rm + lmax
)) · rm · ωstart

t
+

(rm + lmax) · ωstart

t
≤ g

ωstart

t

(

tan(arccos(
rm

rm + lmax
)) · rm + (rm + lmax)

)

≤ g

ωstart

t

(

(lmax + rm) ·
(

1 +

√

1 − r2
m

(rm + lmax)2

))

≤ g . (4.81)

Solving this for the maximum brakable ω leads to

ω ≤ g · t

(lmax + rm) ·
(

1 +
√

1 − r2
m

(rm+lmax)2

) (4.82)

For the hard stop with the acceptance of a lift-off, we take the energy conversation principle
to evaluate the brakable speed. For the worst case, we simplify that all kinetic energy and
rotation energy is converted to potential energy. Due to loss at nearly every point, this is a
pessimistic maximum approach. We quickly evaluate this as

erotation + ekinetic = epot

0.5 · I · ω2 + 0.5 ·m · v2 = m · g · h . (4.83)

To ensure that the robot will always fall back and never tip over the perpendicular point, we
set h to the maximum possible rm + lmax. This gives

0.5 · I
m

· ω2 + 0.5 · v2 < g · (rm + lmax) . (4.84)
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We again simplify the structure to a single mass point at a massless pole, producing a moment
of inertia I of m · r2

m. Also, v = rm · ω is another simplification as we assume full friction and
therefore direct translation from rotation to transition. Putting this into Equation (4.84) and
solving for ω leads to

0.5 · r2
m · ω2 + 0.5 · (rm · ω)2 < g · (rm + lmax)

ω <

√

g · (rm + lmax)
r2

m

. (4.85)

This is the maximum brakable ω if lift-off is allowed. We need to stress that it is very likely that
there will be no lift-off but a bounce and/or abrupt change of rotational direction. After all,
hard stops are seen more as emergency procedures or as an option for robots wherein the actual
controllability is not important. Sometimes, it is simply the only available option in robots.
This is the case with robots using mono-speed poles. The lack of pole-retraction speed control
makes it impossible to perform a soft stop. Therefore, hard stops are the only usable braking
procedure for the prototype.

4.1.5 Slopes and Obstacles

One reason the DAEDALUS project included a pole mechanism was because of obstacles and
its assumed better capability to climb slopes and overcome obstacles. Therefore, we analyze
parameters restricting and influencing these capabilities.

Obstacles

First, we examine perpendicular obstacles, as the forces are rather simple for that kind of setup.
The gravitational force FG pulls the sphere down, and the Force Fp of the extending pole pushes
the sphere up. If FG < Fp, we are able to push the sphere directly upwards. In theory, as there
are no forces to the front and back of the sphere, it pushes itself straight up without touching
the obstacle. DAEDALUS uses an internal weight that can be shifted to the front for ensuring
that it does not fall backward (this was already shown in Figure 2.4). In practice, we can just
have a minimum angle of the pole. This introduces a frictional force Ff due to the movement
and a direct force due to the gravitational force in the direction of the wall Fw due to the angle
of the pushing. Let γ be the friction coefficient between the surface of the sphere and wall, then

Ff = γ · Fw . (4.86)

Let ζ be the angle of the extending pole, then

Fw = FG · tan(ζ) . (4.87)

So, to initiate climbing, we need

Fp >
√

(FG + Ff )2 + F 2
w =

√

(FG + γ · FG · tan(ζ))2 + (FG · tan(ζ))2 . (4.88)

Figure 4.19 illustrates the forces. So, with the ζ = 0 rad, Equation (4.88) reduces to the trivial
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Figure 4.19: Illustration of force for climbing a perpendicular obstacle.

Fp > FG . (4.89)

With a larger ζ, the pushing of the pole will increasingly start to push directly against the wall.
Equation (4.88) represents this by the tan, which increases with larger ζ. The infinite value
at tan(0.5π) represents a direct pushing against the wall, which cannot cause the sphere to be
raised. Therefore, the angle ζ is crucial. The question of a minimum ζ depends on whether the
leverage algorithm can be used or not. With the leverage algorithm, the minimum ζ simplifies
as the sphere can be pushed with a ζ of 0 rad. Once the sphere reaches the top, it will just tip
onto the obstacle. Figure 4.20 depicts this concept.

The transition from the perpendicular upwards pushing to the translation to the right of
0.5 · rm shows a small change of the angle. Yet, in contrast with the evaluation of a small angle
while pushing upwards, the obstacle does slip under the sphere, therefore supporting its weight.
We ignore this angle as there are two options.

First, the sphere has been balanced in such a perfect way that it does not touch the wall,
which is highly unlikely. In that case, the vertical pole extends until the sphere is completely
above the obstacle. Then the robot initiates a tip over to the side by extending one pole, leading
to a shift in the center of mass in that direction.

Second, the sphere already has a minimal angle to stay close to the wall. In this case, a
complex transition takes place. With every new length, ζ changes, the direction and amount
of force from the wall to the sphere change towards a supporting character, and the needed
resulting force compensate gravity increases with ζ. At the beginning the required force is the
same as with a higher obstacle at the same position, and at the end it is almost zero, because
the obstacle compensates the gravity. The analytical solution for this would go far beyond the
scope of this thesis. However, we limit the amount as the needed force does not exceed the force
with the same maximum ζ while still climbing. Let ζend be the angle of the pole on top of the
obstacle, ζstart the angle at the start of the transition, h the height of the obstacle, and rm the
radius of the sphere, then
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Figure 4.20: The sequence of pushing the sphere up with the leverage algorithm. An initial ζ as low as
0 rad is valid for this procedure.

ζend = arctan
(

tan(ζstart) · h+ rm

h+ rm

)

= arctan
(

tan(ζstart) · h/rm + 1
h/rm + 1

)

. (4.90)

Let ζ∆ be the change of ζ due to the movement onto the top of the obstacle, then

ζ∆ = arctan
(

tan(ζstart) · h/rm + 1
h/rm + 1

)

− ζstart (4.91)

The calculation for this is included in the Appendix B.1. With a ζstart of 0, ζ∆ becomes

ζ∆ = arctan
(

1
h/rm + 1

)

. (4.92)

To get the maximum possible ζ∆, we need to lower the ratio between h and rm. The lowest
realistic ratio for this evaluation is h/rm = 1, as its whole purpose is to narrow the maximum
extra force required when pushing the sphere over the top, where the endpoint needs less force
than the starting point. Therefore, a smaller ratio than 1 does not make sense. Considering
this, we get a maximum ζ∆ of 0.464 rad. So, taking this as additional ζ in Equation (4.88) and
a normal ζ = 0 rad that leads to Fp > FG, we get an additional needed force of

Fadditional = FG −
√

(FG + γ · FG · tan(0.464))2 + (FG · tan(0.464))2 . (4.93)

For a friction coefficient of 0.2, the extra force needed is smaller than 21 %. As mentioned
previously, this is the absolute maximum, which ignores every change of Fw, and we assume
that it is much lower or in fact always lower than the force required for pushing upwards. So, if
the robot is capable of movement by the leverage approach and able to balance itself perfectly,
the poles need a power of FG. If it is not capable of doing so, Equation (4.93) provides the
maximum extra power required. If the leverage approach is not possible or available, the whole
estimation becomes different. This is because the rotation starts on top of the obstacle, which
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Figure 4.21: The sequence of pushing the sphere up with the pushing algorithm. The initial ζ cannot
be 0 rad.

requires a certain angle. Figure 4.21 shows this concept. Although climbing is possible with
ζ = 0 rad, the locomotion at the top requires a certain angle for the next pole to push the sphere
for locomotion. The pole intended for locomotion needs to exceed the β value, which is > 0 rad.
The angle between the poles is fixed by the number of poles, n. Let ζend be the last required ζ
for overcoming the obstacle and the next pole being able to start locomotion, then

ζend ≥ β +
2π
n
. (4.94)

However, the actual ascension angle is much steeper at the beginning, as the point of the pole
touching the ground is the same, but the sphere is lower. This initial angle ζbottom depends on
the height of the obstacle h and the radius of the sphere rm. Figure 4.22 depicts the variables
and their placement. Let x be the distance between the touchpoint of the pole and the line
perpendicular to the ground that touches the sphere at one point, then

ζ∗

bottom = arctan(
x+ rm

rm
) (4.95)

and

ζ∗

end = arctan(
x+ 2 · rm + tan(β) · rm

h+ rm
) . (4.96)

Solving Equation (4.96) for x leads to

x = tan(ζ∗

end) · (h+ rm) − 2 · rm − tan(β) · rm (4.97)

and putting it in Equation (4.95) gives

ζ∗

bottom = arctan
(

tan(ζ∗

end) · (h+ rm) − 2 · rm − tan(β) · rm + rm

rm

)

(4.98)

ζbottom = 0.5π − arctan (tan(ζ∗

end) · (h/rm + 1) − 1 − tan(β)) . (4.99)
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Figure 4.22: Illustration of variables for calculating the needed ζ to overcome obstacles without using
the leverage approach atop the obstacle.

Taking the minimum possible value of the original Equation (4.94) and putting it in Equa-
tion (4.99), it becomes

ζbottom = 0.5π − arctan
(

tan(0.5π − 2π
n

− β) · (h/rm + 1) − 1 − tan(β)
)

. (4.100)

To reduce the the minimum possible ζbottom, we can

• increase the number of rods, n, to have smaller angles between the poles,

• decrease β by using stronger actuators,

• increase the radius rm (this also increases the needed pole length), or

• reduce the obstacle height the robot wants to overcome.

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



64 Chapter 4. Approach

If the calculated ζbottom is larger than 2π rad
n , then there exists a pole where θ is smaller than

ζbottom but larger than 0 rad. Therefore, it starts the pushing at the bottom, and once reaching
higher points, the other pole takes over. If there lie multiple poles between the pole needed for
achieving θend and the starting pole, it is not beneficial in terms of maximum needed force, to
change the working pole to a pole between those two. The first one has the steepest angle, which
cannot possibly become negative (falling backward), if it is capable of the starting configuration.
So, the first pole does the main part of the pushing, and the original pole provides the right
angle at the end. It is important to note that the first pole needs to start at a certain θ, ensuring
the right angle for the end position. So, the starting angle θBottomMain for a pole is given by a
modified version of Equation (4.100)

ζbottomMain = 0.5π − arctan
(

tan(0.5π − 2π
n

− β) · (h/rm + 1) − 1 − tan(β)
)

(mod
2π
n

) .

(4.101)
If there is one pole that can do the main extension before the other pole takes over at almost
the top of the obstacle, it does influence the ζ at which a pole must be able to push the sphere
upwards, which in turn influences the needed force. Here starts the same problem as with
the leverage approach: The transition from the upward movement to the sideways movement
is complicated and highly dependent on, for instance, materials. Again, we only consider the
maximum possible forces and therefore look at the maximum possible angle, ignoring it while
pushing against the wall or at the top of the obstacle. Even without the possibility of the second
pole, the maximum angle is dependent on the ratio of h and rm, β, and the number of rods. As
all four variables interact with each other, we define the maximum angle as

ζmax = max
((

0.5π − arctan
(

tan(0.5π − 2π
n

− β) · (h/rm + 1) − 1 − tan(β)
)

(mod
2π
n

)
)

,
(

2π
n

+ beta

))

.

(4.102)

Then, ζmax is used with Equation (4.88) to calculate the force required for a pole to enable
perpendicular obstacle climbing. Until now, we did not take the length of the pole l into
account, limiting the maximum obstacle size. For both approaches (leverage and pushing), the
end position defines the minimum needed l, lminObs. lminObs is given by

lminObs =
h+ rm

cos(ζend)
. (4.103)

For push locomotion, this reduces to

lminObs =
h+ rm

cos
(

2π
n + β

) . (4.104)

For leverage locomotion, this gives

lminObs =
h+ rm

cos
(

arctan
(

tan(ζstart)·h/rm+1
h/rm+1

)) . (4.105)
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Equation (4.104) does lead us to the minimum number of poles for the pushing algorithm. To
get a non-negative length, we need at least

n >
2π

0.5π − β
≥ 4 (4.106)

poles. The minimum number of poles for the leverage algorithm to overcome perpendicular
obstacles is not based on Equation (4.105) but on the nature of the leverage locomotion. For
overcoming obstacles, two poles are enough, as one pushes with sufficiently small ζstart and the
other extends to generate force over leverage. However, two poles are not enough for a valid,
self-starting leverage robot as it requires at least three poles.

Slopes

Next, we evaluate the possibility of TLDR robots climbing slopes. We will evaluate the minimum
force required for remaining stationary at the slope and not a further system description as this
would just lead to a bulkier version of Equations 4.53 and 4.62, whereas the needed force of
the poles for certain slope degrees receives bigger interest. We take the initial evaluation of the
force shown in Figure 4.16 for pushing and Figure 4.17 for leverage and pair it with the force
evaluation of the standard physics problem of a cylinder rolling down a slope. Figure 4.23 shows
the resulting system for a slope with angle ξ. On the slope, the gravitational force of the robot
itself is no longer neglectable, nor does it counter trivial forces. It is split into a force horizontal
to the plane fh and a normal force Fn. It is split as follows:

F g = Fg ·
[

sin(ξ)

cos(ξ)

]

=

[

Fh

Fn

]

. (4.107)

Fn is now the force countered by the structural force of the robot and ground and therefore not
of interest for this evaluation. Fh initiates a counterforce due to the friction between shell and
ground, Ffh, given by

F fh = µrs · F h . (4.108)

With µrs = 1, the sphere rolls down the slope with no slip, with 0, it just slips down the slope
without rotation. To have a standstill, both need to be countered completely. For the pushing
algorithm (marked blue in Figure 4.23), these forces are the resulting lever force Fe and the force
Fr, which act at the center of the robot. In this case, Ffh arises from the difference between
Fr and Fh. There are now two options. First, counter Fh completely by Fr. This will lead to
a Ffh = 0; therefore, this is enough for the robot for this slope. However, this is no complete
balance as there is still a component Fe that initiates torque and hence rotation. This means
that the calculated force is enough but not the possible minimum. The second one is to counter
Fh not completely but just enough that the resulting counterforce Ffh is countered by Fe, and
the difference of both initiates enough rotation to compensate for the direct initiated horizontal
acceleration from the resulting force at the midpoint, which is there as Fh is not countered
completely at the midpoint. Practically, this means that the sphere is always rolling on the
same spot. The first one is a rather quick evaluation. Note that here it is important to use an
adapted ζξ as the absolute pitch of the robot defines ζ, but for the equations to still hold, we
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Figure 4.23: Force evaluation of a TLDR robot on a slope. The blue parts are the forces arising from
the pushing approach, while the green parts denote those from the leverage approach.

need to evaluate from the point of view of the slope (askew to the actual ground). This means
the original ζ is enlarged by ξ; therefore, we define ζξ = ζ + ξ. We now use Equation (4.40),
defining Ff , and set it to counter Fh. Solving for the force of the pole Fp leads to

Fh = Ff

Fg · sin(ξ) = µsPole sin(ζξ) · Fp

Fp =
m · g · sin(ξ)
µsPole · sin(ζξ)

(4.109)

It is trivial that µsPole needs to be greater than 0 as there is no possibility for climbing a perfect
slippery slope. Solving Equation (4.109) for ξ with ζ = 0.25π rad gives

ξ = 2 · arctan













√
2

(

√

(

Fp·µsPole

m·g

)2
−

√
2
(

Fp·µsPole

m·g

)

+ 1 + 1

)

(

Fp·µsPole

m·g

)













. (4.110)

For the later-introduced exemplary prototype (assuming perfect grip, Fp = 24.5 N, m = 25 kg),
this leads to a maximum slope of ξ = 0.071 rad = 4.1 deg. Just for reference, at the lunar surface
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with a gravitational acceleration of 1.61 m/s2, the same setup is able to climb slopes of a maximum
ξ = 0.643 rad = 36.8 deg. Ivanova et al. evaluate the maximum possible slope for pendulum-
driven robots in [33]. Their example uses a robot with the values m = 2 kg andr = 1 m. The
rest of the parameters is not of interest to our evaluation. Still, their pendulum drive is an
optimized realistic setup that is also realizable as our prototype in the low-budget sector. They
estimate the maximum slope as 0.125 rad = 7.16 deg. If we apply the TLDR robot to the same
mass and radius and take realistic pole strengths between 1 N and 2 N, we get a maximum slope
between 0.076 rad = 4.35 deg and 0.167 rad = 9.57 deg. For the pole mechanism in general, there
is no real general slope limit, as hydraulic poles weighing less than 0.5 kg easily bring up 300 N.
Inserting such huge power leads to maximum slopes of 0.5π rad, which means these poles are
capable of pushing the robot straight up, like described for perpendicular obstacles, at least in
a purely mathematical sense.

After all this, we look at the previously described second possibility to define the maximum
slope, where dynamically, the downwards acceleration is compensated by the rotation using
leverage. This will result in a lower needed force of the pole, maintaining the same maximum
slope. However, having a continuous moving system for maintaining the position is not recom-
mended, as we suggest classifying a slope as climbable if the robot can stop and scan in the
middle without having a complex situation to control. Still, in this case, we have a system of two
equations, one regarding the torque and the other regarding the Fh. The unchanging position
defines the system, therefore

arotation − adirect = 0

µrs · 2π · rm · ω̇ − (Fh − Ff )/m = 0

µrs · 2π · rm · ω̇ − (sin ξ · Fg − µsPole · sin(ζξ) · Fp)/m = 0 . (4.111)

With the knowledge of Subsection 4.1.3, we calculate ω̇ with the differences of both torques τfh

and τe, leading to

ω̇ =
τe − τfh

I
ω̇ = (Fe · rPoleEnd − (Fh − Ff ) · µrs · rm) · I−1

ω̇ =
(

cos(ζξ)2 · Fs(1 − µsPole) · 1
rm

− (sin ξ · Fg − µsPole · sin(ζξ) · Fp) · µrs · rm

)

· I−1 . (4.112)

Putting this in Equation (4.111) gives

µrs · 2π · rm ·
(

cos(ζξ)2 · sin(ζξ) · Fp(1 − µsPole) · 1
rm

− (sin ξ · Fg − µsPole · sin(ζξ) · Fp) · µrs · rm

)

· I−1

− (sin(ξ) · Fg − µsPole · sin(ζξ) · Fp)
1
m

= 0
.

(4.113)

Solving this for Fp leads to

Fp =
Fg · sin(ξ) · csc(ζξ)(2π ·m · r2

mI
−1 · µrs + 1)

2π ·m · µsPole · r2
m · I−1 · µrs − 2π ·m · (µsPole − 1) · I−1 · cos(ζξ)2 · µrs + µsPole

. (4.114)
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Evaluating the case of no slip (µ = 1), this reduces to

Fp =
Fg · sin(ξ) · csc(ζξ)(2π ·m · r2

mI
−1 + 1)

2π ·m · r2
m · I−1 + 1

⇒Fp = Fg · sin(ξ) · csc(ζξ)

⇒Fp = m · g sin ξ
sin(ζξ)

, (4.115)

leaving us with the same result as Equation (4.109) with no slip. Because every summand in
the denominator has at least µrs or µsPole as multiplication, evaluating the case of absolute
slip (µ = 0) reduces to non-defined behavior as the denominator becomes 0. Therefore, with a
perfect slippery slope, there is no chance of climbing.

Next, we evaluate the maximum slope of the leverage approach, marked green in Figure 4.23.
The evaluation focuses on the pure use of the leverage approach, not a combination like in the
aforementioned perpendicular obstacle evaluation. We will not derive the forces from scratch as
it already has been done in Section 4.1.3 with Figure 4.17. Fnl and Fr arise from the gravitational
force Fgp. Let τnl be the torque initiated by Fnl, and rc be the distance between the midpoint
of the sphere and the point of combined leverage by the poles, then

τnl = rc · Fnl = rc · (− sin(ζξ)) · Fgp . (4.116)

Fr is split up, and Fr1 is directly countered, but Fr2 adds up with Fh, introducing a linear
acceleration and/or frictional force, depending on the µrs. Let τs be the torque, introduced by
the forces Ffh and Ffr2 on the shell of the robot, and using Equation (4.57) for Ffr2, then

τs = (Ffh + Ffr2) · rm = (Fh + Fr2)µrs · rm = (sin(ξ) · Fg +
sin(2ζξ)

2
· Fgp) · µrs · rm . (4.117)

In contrast with the pushing locomotion, it is not possible to solve this in two ways. The force
we can counter directly is the torque τs that is countered by τnl. However, this does not counter
the linear, direct acceleration. Therefore, the initiated rolling motion due to the difference of
τs and τnl needs to compensate for this direct acceleration adirect. As they are in the opposite
direction, we can put

adirect = arotation

⇒(Fh + Fr2) − (Fh + Fr2) · µrs

m
=
τnl − τs

I
· 2π · rm · µrs

⇒(Fh + Fr2) · 1 − µrs

m
=
rc · (− sin(ζξ)) · Fgp − (Fh + Fr2)µrs · rm

I
· 2π · rm · µrs

⇒1 − µrs

m
=
(

rc · (− sin(ζξ)) · Fgp

(Fh + Fr2)
− rm · µrs

)

· I−1 · 2π · rm · µrs

⇒1 − µrs

m
=





rc · (− sin(ζξ)) · Fgp

(sin(ξ) · Fg + sin(2ζξ)
2 · Fgp)

− rm · µrs



 · I−1 · 2π · rm · µrs

⇒1 − µrs

m
=





−rc

( sin(ξ)
sin(ζξ) · m

mp
+ cos(ζξ))

− rm · µrs



 · I−1 · 2π · rm · µrs . (4.118)
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At this point, it is already clear that for µrs = 0, there exists no solution. Solving this equation
for the needed mass of the mass point of the combined poles leads to

mp = − m sin(ξ) csc(ζξ)
(

I−1 · 2π · r2
m · µ2

rs − µrs + 1
)

I−1 · 2π · rc ·m · rm · µrs+ cos(ζξ) (I−1 · 2π · r2
m · µ2

rs − µrs + 1)
. (4.119)

Setting µrs = 1 and ζξ = 5
4π rad, representing the maximum needed mp without slip, the

equation simplifies to

mp =
2 ·m · rm · sin(ξ)√

2rc − rm

. (4.120)

We can form this equation that it relies on the ratio of mass between the sphere and lever mass
point and on the ratio between the radius and the distance to this mass point.

mp

m
=

2 · sin(ξ)√
2 rc

rm
− 1

. (4.121)

Therefore, we find the maximum ξ with

ξ = arcsin

(

mp(
√

2 rc

rm
− 1)

2 ·m

)

. (4.122)

With parameters roughly describing the later-introduced prototype (m = 25 kg,mp = 0.4 kg, rm =
0.4 m, andrc = 0.85 m), we get a ξ = 0.016 rad = 0.92 deg. With angles of this magnitude, the
geometrical constraints can be ignored. However, with steeper slopes, one needs to consider that
rc might be limited as it touches the ground. This is also not a problem as long as 3

2π − ζ ≥ ξ.
In this case, the line of the pole is parallel to the slope. However, as we defined it as the combi-
nation of all poles, this also does not hold. Therefore, this evaluation needs to be done for every
leverage approach-configuration of the specific robot itself.

4.2 Balancing

Balancing ensures a constant angle to the sides while rolling forward and remaining stationary.
As this is a conservation of a certain condition, closed-loop control is adopted for this problem,
rather than an open-loop algorithm like for the locomotion. As this is a vast field and, like
most closed-loop controlling systems, very dependent on parameter tuning, we will focus on
the problem taking the limitations of our used prototype into account. This means there is no
feedback on the actual extension and mono-speed extension.

4.2.1 General algorithm

First, we identify all the variables. The output of the system is the measured roll. The input is
the desired roll that will always be 0 rad in our case as there is (for now) no reason wanting askew
rolling by the poles. Therefore, the measured output is also the error input for the controller.
At first sight, there are two possible system inputs: the extension length of a particular pole or
the velocity. Due to the lack of real feedback on the length of a pole, the only way for estimating
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it is to integrate the time when it was extended or retracted, like it is done in the locomotion
approach. This leads to adjusting a predicted length of the pole that does not necessarily match
the actual one. Nevertheless, it works as an askew pose is corrected by increasing the length on
one side and decreasing it on the other. Still, there is an actual length of each pole at which
the roll is 0 rad. Let rm be the radius of the sphere and rs the radius of the disc on which the
actuators are mounted; then, the length l, needed at a certain angle ζ, is given by

lbalance =
rm

cos ζ
− rs . (4.123)

Of course, this yields for ζ between 0.5π rad and 1.5π rad. This leads to a minimum lbalance of
rm − rs, showing that controlling the assumed length to control roll is not logical as there is a
theoretical optimal extension. Thus, the task is rather to control the pole to actually reach this
specific extension for its ζ at that moment. So, the only useful controllable parameter is the
extension and retraction speed as the actual extension is either too short despite the estimated
length being correct, or longer than the estimation. This leads to the pole velocity being the
system output, and rather than controlling the roll by the theoretical length of the pole with
the help of speed, we control the roll directly using speed. So, for poles with variable speed,
the speed itself can be taken as system input, which gives a huge variety of controllers that are
theoretically able to solve the problem. In our case, with the mono-speed problem, we only can
extend, retract, or hold. This comes with simplifications, such as the omitting of an anti-windup
system, as there is no unlimited increasing or decreasing value, just the three states with no
further changeable value. However, the knowledge of the existence of lbalance does, even with
this controller, help. For most controllers, an error of 0 corresponds to no change of the system
input as the desired value is reached. In our case, we still want the extension/retraction of a
pole until its lbalance is reached because otherwise, every action includes the extension of at least
rm − rs distance until lbalance. This is most likely to be unstable for a finite l̇max. Therefore, the
controller needs to ensure the theoretical extension to the contact point with the ground. At
a standstill, the controller can do this for the poles on both sides of the sphere (seen in rolling
direction).

In Section 4.3, we will find a compromise between movement and rolling. Nevertheless,
reducing the poles needed to control is always beneficial as it necessitates fewer interactions
between them and ensures fewer conflicts with moving or other actions. Therefore, we define
the minimum number of poles as two because two poles together with the bottom of the sphere
form, if not in line, a triangle, theoretically giving the sphere the capability for stabilization.
The two poles do not need to have the same pole number on both sides, but this does ensure
that the three points are not on a line, when excluding a ζ of 0 deg. Figure 4.24 visualizes this.

Combining two rods on two sides of the sphere for balancing is possible if they do not have
the same extension. However, for a rolling motion, the same extension for two chosen poles on
both sides will happen periodically. Taking two poles with the same ζ, one on each side, gives the
advantage that, with the exception of 0 rad, they always provide a balanceable configuration. It
is definitely possible to use more than two poles, but this gives more room for errors. So, we try
to minimize the number of used rods for balancing, especially if we add movement. Therefore,
we introduce αb and βb, where αb ≥ βb, βb > 0 rad, and αb are smaller than the touchpoint
angle. Also, αb needs to be chosen so that at least one pole is always within the boundaries
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Figure 4.24: Visualization of combinations of rod positions relative to the middle and if they are
balanceable. They are so if the three contact points to the ground do not build a line. The pink and blue
lines represent the two side discs with the corresponding poles. If they are continuous, they represent
an extended pole. The red squares show the contact points of the shell and poles with the ground. The
green dotted lines indicate that no line fits all points. The red dotted line shows a line that crosses all
contact points.
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to be activated for balancing. This was not necessarily required with locomotion, as once it
started, the momentum kept the rotation alive. Altogether, this leads to

arccos
(

r

r + lmax

)

≥ αb − 2π
npoles

≥ βb > 0 . (4.124)

The rod pair, which is between both values, is extended. For a standstill, αb and βb are
mirrored on the axis perpendicular to the ground. This way, extension to balance the sphere,
will not lead to the rotation of the overall sphere in a way that only extending poles at one side
do. For αb and βb, many argumentations used for α and β for the locomotion apply. βs shall not
be chosen too small as the extending will not have that much impact near 0 rad. Also, αb shall
be chosen appropriately for the stability of the pole. This means that for very flexible poles, a
balancing at full extension will lead more to the bending of the rods if the robot tips over and
less to stabilization. It is important that this two-pole approach assumes a perfectly balanced
sphere as a starting point. It is not enough to only have three points simultaneously touching
the ground, but all three need to be under the load of the sphere. This means all points marked
in Figure 4.24 are points on which the mass of the sphere is applied, and only in this case, are
the assumptions valid.

If the robot tips to one side, even slightly, the pole on the opposite side may or may not
touch the ground, but in both cases, it is not bearing any weight of the robot. Therefore, the
stable three-point system becomes an unstable two-point system. Figure 4.25 highlights this.
This slight change of φ is a problem for the three-point approach. As all three points need to
be stressed with the weight, the center of mass needs to stay in the triangle build by the three
points when looking from the top of the robot. If the center of mass crosses the imaginary line
between two points, the remaining point that lays on the other side of this line, then the center
of mass will no longer support the weight but merely touch the ground without pressure. This
leads to a tip over along the crossed axis. With three points, there is a triangle in which the
center of mass can lay and change without endangering stability. Unfortunately, the robot is
supposed to be well-balanced regarding its center of mass. Therefore, the center of mass lies
on, or very near toward, the point of contact of the shell itself. Hence, slight shifts to one of
the sides will lead to exceeding the borders of the triangle. With five points, the center of mass
cannot exceed any of the outer lines between the four touchpoints of the pole. If the center of
mass shifts to the left or right, the diagonal lines are crossed and therefore two points are no
longer loaded with weight, which leaves three points and therefore still a balance system. Figure
4.26 shows this overall behavior.

We see that with five points, the green area, which represents the possible area of the center
of mass, is much larger than with three points. However, this implies a center of mass near the
shell, which is not suggested and technically highly unlikely. Therefore, we focus on the case
that the robot has the center of mass at the center of the sphere. This leaves the three-point
setup with only one stable roll, 0 rad, as with any other roll, the center of mass lies to the left
or right of the original point.

However, the five-point setup leaves a line of possible positions and hence a band of stabi-
lizable φ. With all this taken into account, Algorithm 8 shows an algorithm to stabilize the
robot. If the evaluation shows a rattling behavior, the error between the desired roll φ and the
actual φ, ǫφ needs to be extended by a hysteresis factor. For positive error, lowering it with a
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Figure 4.25: Visualization of the change of three-supporting points to two-supporting points system if
φ changes slightly. The pink and blue lines represent the two side discs with the corresponding poles. If
they are continuous, they represent an extended pole. The red squares show the contact points of the
shell and poles with the ground. The green dotted lines indicate that no line fits all points. The red
dotted line shows a line that crosses all contact points.

factor if it has been exceeded and increasing it with a factor if it has been undercut, will create
a hysteresis. For negative error, it is done the other way round.

As in theory, well-met lbalance do not allow any ǫ 6= 0; we suggest handling every extension
of the stabilize algorithm as one without the actual length change of the pole as it is likely to
push into the ground. If there is no measurement of the actual length but just an estimation
from integrating time, this extension will lead to huge miscalculations. This leads to a retraction
after the φ is back near 0 rad as the theoretical length is far extended due to the last seconds
of extension, and the pole will try to reach lbalance. This is met in the pseudo-code in general
by not retracting but just holding if ǫ is small but l > lbalance. In the later-used real code run
on the prototype (shown in Appendix A.4), this is done by the implementation of a state of the
pole called "ExtensionFruitless," which extends a pole but prohibits the integration of the length
estimation.
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Figure 4.26: Visualization of the change of three supporting points to two supporting points system if
φ changes slightly. Above: Theoretically possible area for the center of mass. Below: Logically possible
center of mass, as it is within the sphere. The red line/dot shows the stable place(s) for the center of
mass if it is located in the middle of the sphere and the sphere is rolled from the mid-position to an askew
position. The pink and blue lines represent the two side discs with the corresponding poles. If they are
continuous, they represent an extended pole. The red squares show the contact points of the shell and
poles with the ground. The green dotted lines shows the imaginary line crossing the contact points of
the poles and the one of the shell.

4.2.2 Limitations

The overall behavior of mono-speed poles limits the balancing capabilities of the robot, as a
three-point controller with hysteresis is not well-suited for complex controlling strategies [10].
However, not only the speed but also the position and arrangement of the pole inside the sphere
leads to overall limitations. Therefore, there exists a φcatastrophic at and after which no pro-
active stabilization using poles is possible. This φcatastrophic starts at the angle at which the
points touching the ground from poles of one side and the sphere itself build a line. Figure 4.27
visualizes this behavior. Let rm again be the radius of the sphere, rs the radius of the disk where
the pole is mounted, and φcatastrophic the angle at which no pro-active balancing is possible, then

φcatastrophic = arccos
(

rs

rm

)

. (4.125)
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Algorithm 8: Balancing Algorithm

foreach pole in poles do

if βb ≤ ζ ≤ αb then

if ǫφ > threshold then
extend pole

else if ǫφ < −threshold then
retract to rm − rs

else

if l < lbalance then
extend pole

else
hold pole

end

end

else if 2π − βb ≤ ζ ≤ 2π − αb then

if ǫφ > threshold then
extend pole

else if ǫφ < −threshold then
retract to rm − rs

else

if l < lbalance then
extend pole

else
hold pole

end

end

else
retract pole

end

end

If we do not use a spherical shell but rather use an oval one or just disks, as the initial prototype
in this thesis, there is a distance ds

m between the middle and the side discs. For a sphere, this
distance is

ds
mSphere = tan

(

arccos
(

rs

rm

))

· rs . (4.126)

Let ds
m be the variable distance between the middle and the pole disc, then

φcatastrophic = 0.5 · arcsin
(

ds
m

0.25 · rm

)

. (4.127)

Appendix B.2 provides the derivation and the visualization. Equation (4.127) does not depend
on rs. This is due to the variable length of the pole. Therefore, a smaller rs has the same
φcatastrophic as a larger one, as the extending poles will touch the ground on the same line. All
these calculations assume an evenly distributed mass as well as no bending of the poles. Bending
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Figure 4.27: Above: Visualisation of the φcatastrophic, where the touchpoints of the poles on one side
build a line with the touchpoint of the sphere. Below: Further escalation to the point that the pole does
not even touch the ground. The pink and blue lines represent the two side discs with the corresponding
poles. If they are continuous, they represent an extended pole. The red squares show the contact points
of the shell and poles with the ground. The red dotted line shows a line that crosses all contact points.

influences the φcatastrophic tremendously. Figure 4.28 shows the influence of bending. To avoid
the whole problem, a hardware-based solution is to add a side pole to the sides of the robot,
perpendicular to the other poles. This pole is supposed to push the robot from its side back
to at least the φcatastrophic. This is possible with a short extension but with enough force and
speed to generate momentum or with a long enough pole. With a too short pole, even with a
fast and powerful extension, there might be an angle at which the main poles have no chance to
stabilize the robot, while the side rod does not reach the ground. The length of the side pole of
a general robot is given by

lside =
0.5 · rm

tan (φcatastrophic)
− ds

m , (4.128)

so, with Equation (4.127)

lside =
0.5 · rm

tan
(

0.5 · arcsin
(

ds
m

0.25·rm

)) − ds
m . (4.129)

For the sphere, we assume space between the side disc and the shell, which we not include in
the extension length of the pole.
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Figure 4.28: Influence of pole bending on the φcatastrophic. The dotted line is the pole without bending,
reaching exactly the grey line, and is therefore on the edge of φcatastrophic. The dashed line includes the
bending of the pole that is not able to stabilize the robot.

Let lsideSphere be the minimum possible extension needed for a side pole of a spherical robot
to turn the sphere to φcatastrophic, then

lsideSphere =
0.5 · rm

sin (φcatastrophic)
− 0.5 · rm . (4.130)

Inserting Equation (4.125), this becomes

lsideSphere =
0.5 · rm

sin (arccos
(

rs

rm

)

)
− 0.5 · rm =

0.5rm
√

1 −
(

rs

rm

)2
− 0.5 · rm . (4.131)

Appendix B.3 contains the illustration of the variable for the derivation. For our implementation,
the φcatastrophic does not have a direct influence on the code or evaluation as we neither have side
poles to compensate for this, nor want to initiate any other φ than 0 rad. If the spherical robot
needs to have some kind of askew mode, this becomes more relevant as it limits the maximum
possible φ. Also, with existing side poles, any φ > φcatastrophic is a non-negotiable indication for
their use as the only chance for pro-active re-balancing. Without such an explicit askew mode
and without a side pole, we only use it to detect irreversible tip-overs.

4.2.3 Comparison of disc- and sphere-setup

We switched between the usage as disc-robot, cylinder, and sphere for locomotion, as it does not
differ regarding its pitch behavior. For balancing, we get different behaviors with these shapes.
The behavior of the stable areas for the center of mass is the same, and the calculation of the
φcatastrophic was done for both, as they got direct different values of angles. However, for φ̇, there
are also differences. This does not lead to any angles at which a disc robot is not stable, but a
sphere is. Still, taking the extending speed of the actuators into account, there are cases wherein
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Figure 4.29: Reducing a massless sphere and massless single disc prototype with one point mass on the
left side to a tick with a point mass at 0 deg and 30 deg. The yellow parts represent the reduction of the
sphere, the blue of the disc setup. G indicates the gravitational vector on the structures.

the velocity and acceleration of φ determine if the setup is balanceable. The hypothesis is that
with a sphere, φ̇ and φ̈ are generally slower than with a disc robot.

We reduce the sphere robot to a massless sphere with one point mass on one side for this
evaluation. We also reduce the disc robot to a massless structure with one point mass. The
structure contains a middle disc of the size of the sphere. For simplification, we assume infinite
small side discs, which are not relevant as we focus on the passive behavior without any pro-
active influence. To evaluate the momentum the point mass generates, which will lead to a
change of φ, we reduce both robots at every single moment to a massless stick with the weight
on it. This is valid in terms of momentum because it is defined by M = F · a, where a is the
position vector perpendicular to the force vector, and F is the applied force. This means that
the only relevant points are the position of the point mass, the position of the point touching
the ground, and the applied force [53]. Reducing the robots in the described way changes none
of this. However, doing so reveals that they reduce to the same structure at a vertical start,
but once φ changes, they differ, as the sphere continuously changes the point on the sphere that
touches the ground. As we roll to the side of the point mass, except at the start, a is always
smaller than with the reduced disc structure, and the angle will always be smaller. Figure 4.29
shows this circumstance. The same applied force with a smaller angle (steeper) and shorter a
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distance will lead to less torque. This again results in smaller φ̈ and therefore smaller φ̇, which
may allow the slow and weak actuators to interfere at a certain φ, at which they may not be
able to with a disc setup. The conclusion here is that if a setup is balanceable as a disc setup,
the same setup with a spherical shell would also be balanceable. The same argumentation and
behavior apply for spheroids, as the touchpoint also migrates nearer to the point mass if it tips.
This holds true for the exact same setup (same weight, same actuators, size, etc.). For example,
this does not hold true for our prototype as a disc prototype is placed inside a spherical shell.
The weight of the shell is not included in the disc setup. Therefore, the moment of inertia is
bigger as an overall larger mass is given. In the extreme case, a disc structure with minimal
weight is placed inside a shell that has an infinite weight, not evenly distributed, which will not
be stoppable by actuators with finite force, showing that the requirement of the same weight
conditions of both structures is essential. The friction of the sphere with the ground does have
an influence, and further research needs to address it for a precise analytical evaluation. For the
dimensions and materials of our prototype, it becomes neglectable [28].

The last point regarding the sphere versus disc robot issue is rather obvious, but we need to
mention it for the sake of completeness. The previous evaluation used a point mass at the outer
point of the robot, which leads to no configuration where there is no momentum, so there is no
zero moment point (ZMP) near the starting configuration. Of course, this is highly unlikely, and
both robot types are very likely to be built very symmetrically regarding weight. This results
in the analysis of changes of φ, which are introduced by external force and not an internal
imbalance of the weight. As the nature of the sphere, if the weight is right at the center of the
sphere, an external change of φ will not cause further escalation as with the changed angle the
center of mass is still in the middle and does not initiate any resulting force. This means there is
a ZMP, and the stable region for it is infinitely large. When rotating a sphere, the point nearest
to the ground (automatically the touchpoint) will always lay in the middle. Therefore, there is
an infinite stable area. For a disc setup, this however does not hold true. With a large middle
disc, changing φ, the point nearest to the ground and touching it is still the same. However, it
does not lie under the center of mass anymore. Therefore, the gravitational force attacking at
the center of mass is not parallel to the axis of the touchpoint and center of mass. As a result,
the structure no longer compensates the whole gravitational force, which is now directed to the
side and leads to acceleration. Figure 4.30 shows this in the same manner as in Figure 4.29 but
with centered mass. The real prototypes are likely to have an imbalance in them, and therefore
the resulting dynamics will be somewhere between both evaluations. However, the stable area
of the ZMP for the disc setup will always be smaller than the one for the sphere [74].

4.3 Combination of Balancing and Movement

4.3.1 Individual approach

After evaluating balancing and locomotion separately, we want to discuss the combination of
both. There is a clear priority inclination between both parts, as balancing is crucial for the
overall mission concerning the possibility of full mission failure if we exceed certain angles (cal-
culated as φcatastrophic). Therefore, the primary objective needs to be controlling φ, and the
secondary should be to control ω. The straightforward approach is either a balance or locomo-
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Figure 4.30: Reducing a massless sphere and massless single disc prototype with one point mass in the
middle to a tick with a point mass at 0 deg and 30 deg.The yellow parts represent the reduction of the
sphere, the blue of the disc setup. G is the gravitational force, Fp is the force by the stick, and Fr is a
non-compensated force to the side.

tion approach. We define an accepted error of phi ǫφ and start the locomotion until this error is
exceeded, at which moment the balancing algorithm starts. Also, this might sound ineffective,
but we need to keep in mind that a mass-balanced spherical robot is a stable system. For a
disc-based robot, this will not work as the balancing is likely to occur all the time due to the
instability of the system. Further, this is highly ineffective as there exists the possibility of
balancing while moving. However, for this kind of stable sphere robot, we can take Algorithm 8,
which balances the robot, and adopt it. We extend the two cases that have no direct influence
on the balancing and allow an overwriting by the locomotion algorithm (which can be any of
the algorithms described in Section 4.1; we amploy Algorithm 5 as it has leverage and pushing,
and Algorithm 7 for braking). In addition, we limit the use of the rods on the side facing the
desired locomotion direction to the standstill case and the emergency case. The emergency
case refers to an uncontrolled tip-over. We determine if this tip-over occurs or if it is just the
commanded rotation with a faster ω than the intended cω. This together leads to Algorithm 9
for mono-speed poles.

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



4.3. Combination of Balancing and Movement 81

Algorithm 9: Balancing and locomotion for mono-speed algorithm

foreach pole in poles do

if βb ≤ ζ ≤ αb then

if ǫφ > threshold then
extend pole

else if ǫφ < −threshold then
retract to rm − rs

else

if l < lbalance then
extend pole

else

if ω > 0 then
use Algorithm 5

else
use Algorithm 7

end

end

end

else if 2π − βb ≤ ζ ≤ 2π − αb and 0 < cω ≤ ω then

if ǫφ > threshold then
extend pole

else if ǫφ < −threshold then
retract to rm − rs

else

if l < lbalance then
extend pole

else
hold pole

end

end

else

if ω > 0 then
use Algorithm 5

else
use Algorithm 7

end

end

end
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Figure 4.31: Visualization of VPIP (blue) and the describing angles φVPIP and θVPIP. The robot (red
sphere) rolls into the v direction. The grey plane shows the actual ground.

4.3.2 Virtual Pose Instruction Plane (VPIP)

For poles with variable speeds, we can derive a more detailed algorithm. Rather than combining
the separately evaluated instructions of locomotion and balancing, we want to evaluate the state
of the poles based on the need for both of them. We therefore control the poles by absolute
length. This brings us from the evaluation in 2D, as was done separately for balance and
locomotion, to an evaluation in three dimensions. Also, we will leave out the field of evaluations
where it does not matter if it was a spheroid or sphere robot as this evaluation is specific to
spherical robots. If the poles are only speed-controllable, this can be done by the derivation of
the length. We, therefore, introduce the Virtual Pose Instruction Plane (VPIP). The VPIP is a
plane that determines the lengths of poles. The poles extend and retract to the length that they
lay theoretically on the VPIP. The VPIP is fixed to the robot at the same point where the robot
touches the ground. The plane itself has no shape and hence no relevant rotation about the axis
perpendicular to the real ground. Therefore, only two angles describe this plane: φVPIP and
θVPIP. They have the same direction as the internal φ and θ of the robot. Figure 4.31 illustrates
VPIP. We define the rolling direction as the y-axis, the z-axis perpendicular to the flat ground
passing the midpoint of the robot, and the x-axis to complete the right-hand system. Let the
contact point of the robot r0 to the ground be always at (0, 0, 0), and n be the normal vector
on the plane, then, the VPIP ΠVPIP is defined by

ΠVPIP = n · (r − r0) =









tan(φVPIP)

tan(θVPIP)

1









· 1
√

tan(φVPIP)2 + tan(θVPIP)2 + 1
·









x

y

z









= 0

↔ tan(φVPIP) · x+ tan(θVPIP) · y + z = 0 . (4.132)
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Figure 4.32: Illustration of pole line for VPIP evaluation. The blue points are used to calculate the
line.

The idea is to not change the pole length to touch the ground but the VPIP. Therefore, if we tilt
the VPIP, as shown in Figure 4.31, the poles on the left front side (seen into velocity direction)
retract, on the rear right side extend. For the other directions (front right, rear left), we can
not state general actions for every pole, as it depends on their ζ.

To find the needed length of a pole to touch the VPIP, we need to find the equation of a
line of a pole in this representation. Therefore, we define the point pm in the middle of the side
disc and the point pt as the tip of the fully retracted pole. Figure 4.32 shows the two points in
the three-dimensional view as well as the two two-dimensional views for easier calculation. We
derive from this figure that

pm =









cos(φr) · ds
m

0

rm − sin(φr) · ds
m









, (4.133)

and with that, we can derive pt as a combination of the point pm and the vector from pm to pt.
Let dmt be the vector between pm to pt, then

pt = pm + dmt = pm +









− cos(ζ) · rs · sin(φr)

− sin(ζ) · rs

− cos(ζ) · rs · cos(φr)









. (4.134)

A more detailed derivation of this is attached in the Appendix B.4. ds
m is not variable in the

case of a sphere but defined by

ds
m = sin

(

arccos
(

rs

rm

))

· rm . (4.135)

for both sides of the pole discs, there needs to be an adaption. We do this by mirrororing pm

at the main disc plane. Therefore, we define pml as the pm for the middle of the left disc and
pmr of the right (seen in the rolling direction). This leads for pml to

pml =









− cos(φr) · ds
m

0

rm − · sin(φr) · ds
m









, (4.136)
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To work out an overall solution, we give the left side the number −1 and the right side 1. We
will refer to this as side factor sf and write the general pm as

pm =









sf cos(φr) · ds
m

0

rm − sf · sin(φr) · ds
m









, (4.137)

Now, we calculate the line of a specific pole, which goes through the point pm with the direction
dms. Let ζ be the angle of the pole, φr the actual roll angle of the robot, rs the radius of the
disc inside the spherical robot wherein the poles lie, rm the radius of the sphere, ds

m the distance
between the midpoint and the side disc of the poles (which is non-variable and set due to the
fixed rm and rs, which will be specified later), and sf the side factor; then, the line of this pole
Lp(ζ, φr, sf ) is defined by

Lp(ζ, φr, sf ) =















(x, y, z)|









x

y

z









=









px
m

py
m

pz
m









+ λ









dx
mt

dy
mt

dz
mt









|λ ∈ R















Lp(ζ, φr, sf ) =















(x, y, z)|









x

y

z









=









sf · cos(φr) · ds
m

0

rm − sf · sin(φr) · ds
m









+ λ









− cos(ζ) · rs · sin(φr)

− sin(ζ) · rs

− cos(ζ) · rs · cos(φr)









|λ ∈ R















. (4.138)

We use λ as an indication of the extended length as we have the midpoint of the pole disc as
a fixed point for the line and then λ times the gradient of the pole. So, if we normalize the
vector of the gradient, λ represents the actual length of the pole but including rm. Therefore,
we write λ as rs+l

rs+lmax
. This leads to a mathematical possible negative l (if the original λ is 0)

and l larger than lmax. In these cases, we need to consider the practical limitations of the pole.
The negative extension means full retraction only; larger extensions than possible are just full
extensions. For this representation of λ, the vector that it scales needs to be normalized. This
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leads to

Lp(ζ, φr, sf ) =








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
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. (4.139)

Note that we set l ∈ R despite the physical limitation is from rm to rm + lmax, as this does
not imply if the pole needs to be fully extended or retracted in cases of no solution for the
intersection with the VPIP.

Now, we evaluate the intersection of Lp(ζ, φr, sf ) and ΠVPIP. This is the point where the
poles need to extend to. Therefore, we set the components of Equation (4.138) into Equa-
tion (4.132) and get

ΠVPIP = Lp(ζ, φr, sf ) (4.140)

tan(φVPIP) · Lp(ζ, φr, sf )x + tan(θVPIP) · Lp(ζ, φr, sf )y + Lp(ζ, φr, sf )z = 0

l =
(− tan(φVPIP) · sf · cos(φr) · ds

m − rm + sf · sin(φr) · ds
m) · ||dmt|| · rs + lmax

tan(φVPIP) · dmtx + tan(θVPIP) · dmty + dmtz
− rs . (4.141)

With l, one could find the corresponding (x, y, z) of the intersection by putting l into Equa-
tion (4.139). However, for our evaluation, l is the wanted variable for controlling the poles to
lie on the VPIP; therefore, we refer to this as lVPIP. Appendix (B.1) contains the fully inserted
equation. This step needs to be done for every step for all poles. For most cases, we reduce the
amount by just ignoring all poles between 0.5π rad and 1.5π rad, as it needs particular, extreme
cases for them to interact. The overall control mechanism always controls the poles that their l
matches lVPIP and controls θVPIP and φVPIP. For the angles of the VPIP, we will not derive a full
control system as this exceeds the scope of this thesis and will be addressed in further research,
but we give a short overview of the expected behavior. φVPIP needs to compensate the ǫφ and
therefore is in the same direction as the roll of the robot φ. So, if the robot falls to the right,
the VPIP will lower the right and rise to the left side. This leads to an extension of the poles
on the right side and a lowering of the pole on the left, which is the right action for countering
the tip to the right. The idea is to control in a closed-loop manner the φVPIP on the basis of ǫφ.
In the same manner, θVPIP is controlled by cω. Lowering the VPIP on the back and rising it on
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Figure 4.33: Virtual Pose Instruction Map (VPIM) visualization. Green: VPIM. Blue: original map.
Red: robot.

the front of the robot will lead to retraction of poles on the front and extension of poles on the
back, leading to locomotion to the front. As the ζ change during this process, lVPIP changes for
the specific poles, with the actual VPIP staying the same. Therefore, a θVPIP 6= 0 rad leads to
a continuous motion. With increasing cω, θVPIP can be chosen steeper. This is also done using
a closed-loop controller. As the later-introduced prototype has mono-speed poles, we cannot
evaluate the results of VPIP.

4.3.3 Outlook on Virtual Pose Instruction Map (VPIM)

We want to look into possible further steps and problems regarding VPIP. First, we want to
take the environment into account and therefore widen the application to not only a plane
but a whole map of the environment structure. We introduce the Virtual Pose Instruction
Map (VPIM), where the plane is replaced by the actual map, which is again changed in tilt
and pitch, φVPIM and θVPIM. The overall behavior stays the same as with VPIP. Therefore,
we calculate the intersection of the map and the poles, like in Equation (4.140), but with the
Map MVPIM instead of the plane ΠVPIP. Figure 4.33 shows the visualization of VPIM. This
raises the question of the origin of the map. Of course, it can be a predefined map, but there
needs to be a sensor for a localization algorithm. Also, a map generation in situ, as Chapter 2
introduces it as idea of the DAEDALUS sphere, is possible. Here, the robot houses at least
one LiDAR scanner (light detection and ranging). The scans are done by dedicated phases
of scanning or continuous scanning during locomotion. With the generated point cloud, the
map of the immediate environment of the robot can be calculated. This procedure has already
been investigated and optimized [83] [11] [59]. This map is then rotated by a rotation matrix
generated based on φVPIM and θVPIM. Several open points need to be investigated. We list some
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open points and problems without claiming completeness:

• Computational power: There are many point cloud-to-map optimization algorithms, as
well as simultaneous localization and mapping (SLAM) algorithms for localization in a
given map. These also work on embedded systems. However, generating maps is often
not considered on the robot side and, most often, not in near real time. Using VPIM, this
becomes necessary to work in nearly real time, as for locomotion, the map needs to be
generated for direct usage.

• Foresighted actioning: There are several situations wherein an extension of a pole may
be possible and indicated, but further rotation and movement lead to entrapment. Fig-
ure 4.34a shows this schematically. Here, with a slow l̇max, the pole will get stuck once
rotation proceeds, despite being valid in the instantaneous evaluation.

• Anti-windup and extreme scenarios: Figure 4.34b depicts the case of a perpendicular object
in front of the robot. It takes nearly a θVPIM of 0.5π rad for the right poles to extend. As
we assume the changes are non-rapid (especially θVPIM), this transition will take a long
time. During this time, the sphere pushes itself onto the obstacle until finally lifting off.
This transition may be harmful to the robot; therefore, there is the need for adaptions in
extreme cases like perpendicular objects. This targets the anti-windup mechanism, as we
do not want to change θVPIM too quickly, since the whole system may not be able to move
faster or the transition takes longer. Still, we also do not want to push for an extended
period against the obstacle until finally starting to push. Also, there is the problem that a
θVPIM of 0.5π rad in the shown case will only lead to an intersection of a pole at ζ = 0 rad,
but as the tip lies directly on the VPIM, it will not extend. Therefore, the procedure of
vertical acceleration is not given without modifications of VPIM.

• Linear shift: The problem with the perpendicular obstacle shows the problem with all
intended linear, non-rotational transitions of the robot with the VPIM approach, as it is
designed for just the rotation movement. One solution is to add linear shifts to the VPIM.
For the obstacle example given in Figure 4.34b, a shift of the whole map downwards leads
to an extension of the rods at the bottom of the sphere, resulting in the intended climbing
of the perpendicular obstacle.

• Scope: The mandatory characteristics for a robot to be controllable by the VPIM as well
as VPIP need to be defined to know for which kind of robots they are suitable for.

• Map requirement: The required quality of the map in order to get a certain quality of
controlling needs to be defined. This brings information about the possible usable sensors
and algorithms for map creation and optimization.

Figure 4.35 shows the overall cycle. This process of acquiring a point cloud (which also
includes the optimization), generating the map out of the point cloud, the rotation of the map,
and the calculation of the intersection of each pole with the VPIM, need to be optimized to
the speed of the overall control frequency of the rods. Each step has a lot of potential for
optimization and needs to be adapted to the specific needs of the VPIM control approach. This
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(a)

(b)

Figure 4.34: Illustration of two open points of VPIM. Left: Foresighted actioning. As the robot rolls to
the right side, the pole will get stuck in the pit if the retraction speed is not fast enough. Right: Extreme
scenario of perpendicular obstacle. The red line shows the start-VPIM, which is tilted further until it is
the green line. Only when reaching the green setup, VPIM will lead to successful actions of the poles.

also gives the opportunity for a symbiosis of payload data with the robot itself, like mentioned in
the introduction in Section 1.1. The point clouds and maps produced for the scientific return of
a mission can be used for controlling, even if it is likely to be in a reduced or simplified version.
This symbiosis can also work in the other direction. Due to this combination, there is not one
LiDAR each for scientific return and the robot, but two same sensors, leading to redundancy
for both applications.
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Figure 4.35: Cycle of the calculation of VPIM.
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Chapter 5

Prototype

5.1 System

5.1.1 Number of Rods and Extensions

One point to be considered for a TLDR robot is the number of rods and the extensions used
per rod. This is a pure practical issue, as all formulas and evaluations in the previous chapters
just assumed a certain pole length, which is larger than the radius of the side disc, but it is not
how this is practically achieved. The number of extensions and number of used rods need to be
analyzed in combination as they are highly dependent on each other. For this evaluation, the
rods are numbered and referred to as shown in Figure 5.1. The first one is always the one with
the smallest ζ and then increase the pole-number counterclockwise. This definition certainly
does not hold for rotating the overall structure as the same rod would change its number, but
it is sufficient for this evaluation and the calculations.

The number of rods is mostly defined by the capability of the configuration for locomotion.
For forward locomotion using pushing, rod two must rotate the sphere right to the point where
the extension of rod one leads to rotation. This is theoretically possible with every configuration
with more than four rods. With four rods, even with the infinite extension of rod two, rod one

Figure 5.1: Number assignment of rods.
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Figure 5.2: Different extensions are needed for five- and six-rod configurations to get rod one to point
down.

is just at ζ of 0 rad. Therefore, five is the minimum rod number to theoretically enable a pure
pushing behavior. Although there is the possibility of rotation at a specific speed so that the
existing momentum will rotate the sphere the needed amount to start extending rod 1. For a
start, where the momentum is 0, this is not possible.

Figure 5.2 shows this behavior using a five- and a six-rod configuration. Chapter 4 describes
the need for an angle β, as 0 rad is not enough for extending. Let n be the number of rods, and
β the angle at which rod 1 starts its extension, then

βmax = 0.5π − 2π
n
, (5.1)

which gives a maximum β of 0.314 rad. If we take the maximum length lmax of a pole into
account, using Equation (4.2), we get

βmax = arccos
(

r

lmax + rs

)

− 2π
n
. (5.2)

We will proceed with the knowledge of the minimum five rods, as the prototype introduced in
the next section fulfills the requirement with its lmax.

For leverage, Section 4.1 already found three poles to be sufficient for a theoretically possible
leverage locomotion. This was, as with two poles, the scenario of both pointing vertically, one
upwards and one downwards, which does not allow the start of the leverage approach. With
three poles, there is no such case.

The rods are not only used for locomotion on flat ground but also to overcome obstacles. For
the best case (rod 1 points down), there is no difference between different rod configurations as
the extension of rod one leads to climbing. More interesting is the worst case, where rod one is
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A\B 5 6 7 8 9 10

0 % 4 2 2 1 1 1

20 % 5 3 2 2 2 1

40 % 6 3 3 2 2 2

60 % 7 4 3 3 2 2

80 % 8 5 4 3 3 3

100 % 9 5 4 3 3 3

Table 5.1: The number of extensions needed to be capable with B rods per side disc to overcome
obstacles with A percent of its radius. A = 0 is the necessary number of extensions for a configuration
to just roll on flat ground. Calculated for a diameter of 1 m, an overall length of the actuator of 0.40 m,
a non-extendable part per rod of 0.1 m, and a non-extendable part per extension of 0.01 m. The side disc
is shifted 25 cm from the middle disc.

a minimum angle before rod 8 is able to start pushing. Subsection 4.1.5 provides the calculation
of the exact lengths required; not the length of the extended pole to fulfill the requirement but
rather the number of telescopic extensions needed is of interest. More extensions lead to more
complexity and instability of the single rods. However, the points of failure also increase with
more actuators. Therefore, the overall goal is to find a good compromise between extensions
per pole and number of poles. Table 5.1 shows the needed number of extensions for a given
number of rods to overcome certain obstacle heights. We assume a non-extendable part of a rod
of 0.1 m and a overall size of one actuator 0.4 m, which is a good radio. The line of a height of
0 % therefore is the needed extension for just implementing pushing locomotion. The same is
done for the used actuator of our prototype, with an overall size of 0.35 m and a non-extendable
part of 0.23 m, which is a rather bad ratio. Table 5.2 shows this. Table 5.1 and 5.2 give a rough

A\B 5 6 7 8 9 10

0 % 11 5 4 3 3 2

20% 13 7 5 4 4 3

40% 16 9 7 5 5 4

60% 19 10 8 7 6 5

80% 21 12 9 8 7 6

100% 24 14 11 9 8 7

Table 5.2: The number of extensions needed to be capable with B rods per side disc to overcome
obstacles with A percent of its radius. A = 0 is the necessary number of extensions for a configuration to
just roll on flat ground. Calculated for a diameter of 1 m, an overall length of the actuator of 0.35 m, a
non-extendable part per rod of 0.23 m, and a non-extendable part per extension of 0.01 m. The side disc
is shifted 25 cm from the middle disc.

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



94 Chapter 5. Prototype

overview over the range of extensions, as the first is a good ratio of length per extension to the
overall length and the second a bad one, but both belonging to a existing range of real actuators.
So overall, we can decrease the number, if there is a sufficient stable way for multiple extensions
in one rod. It may be considered that an even number of rods allows mechanisms of coupling
opposite rod motors, as this is also an approach for lowering the number of needed actuators.
For our prototype, we used eight actuators with maximum five extensions.

5.1.2 Complete Design

The design of the prototype approximates the shape of the sphere by three discs. On both
the outer discs, eight linear telescopic actuators are mounted. Struts connect those discs to the
middle discs, where all further electronics are mounted. Figure 5.3 shows the design as blueprint,
whereas Figure 5.4 illustrates the actual prototype without shell and Figure 5.5 shows it with
shell.

The disc design leads to an aggravated tilting behavior and, therefore, makes balancing more
challenging. For testing different approaches for locomotion, a modified version of the prototype
of Figure 5.6 was designed. As the evaluation of which rods to use and when to extend, would be
overshadowed by the extensions and retractions for balancing; the initial evaluation of different
movement methods is done by a cylindrical design rather than spherical design. Therefore, the
radius of the middle plate was reduced to the same radius as both side plates. All three plates
now touch the ground simultaneously, and there is no need for stabilizing to the left or right.
To ensure the same rolling behavior and same forces, the original middle plate and the shrank
have the same volume and hence the same mass. This is achieved by reducing the amount of
cut-out material. The electrical components stay the same. Therefore, the overall mass stays
the same. Most importantly, for the IMUs, all components stay at the same position relative to
the center of the sphere as no point lies between the smaller and the original radius. Figure 5.7
shows the real setup of the prototype. Table 5.3 lists all the used components.

5.2 Electric components

The electrical components are the same for both designs. A Raspberry Pi 3 microcontroller is
the main processing unit. It estimates the pose of the prototype based on three Phidget 1044
inertial measurement units (IMUs). Due to the striving toward space-suitable solution, only the
accelerometer and gyroscope of the IMUs are used, and the magnetometer is not used. Therefore,
it is not a problem to place the IMUs near quickly voltage changing parts. The algorithm used
to estimate the pose of a spherical robot with three IMUs is described in Two relay boards with
each 16 relays switch the power and signal line of each of the 16 actuators on and off. They switch
the 12 V of the main power supply directly to both lines of the actuator. The Subsection 5.2.1
describes the function principle of the actuator. The relay boards themselves are also powered
directly by 12 V. As the Pi runs on 5 V, a step-down converter is put between the main source and
the Pi. The signal for switching the relay boards needs to be 5 V for the used optocouplers used
on the relay board. The GPIO pins of the Raspberry Pi provide only 3.3 V, an Arduino mega
2560 Board is used to control the relay boards, as the Arduino switches 5 V over its GPIOs. The
communication between both the microcontrollers is done by serial communication, using a USB
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Figure 5.3: Blueprint of the prototype without the spherical shell.
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Table 5.3: Used components for the Prototype. Small or generic parts like installation terminals or usb
cables are excluded.

Component Name Quantity Input Voltage

Controlling

Raspberry Pi 3 B+ 1 5 V

Arduino Mega 2560 1 5 V/12 V

Phidget 1044 IMU 3 5 V

USB Hub (4x) 1 5 V

Actuator

Electrical Motorantenna Universal (Solvig) 16 12 V

16-Relais Module 12V with Optocupppler (AZDelivery) 2 12 V

Power

V-Mount Battery 190 Wh 2 14.4 V

V-Mount Battery Plate 2 -

12 V Stabilizer with 6 A output 2 8 V-40 V

5 V converter 1 12 V

Structure

Side Disc 2 -

Middle Disc 1 -

Disc-connection screws M10 280mm 16 -

Spherical shell half 2 -

connection. This gives a more versatile solution for further prototypes. Appendix A.3 holds the
used code for communication on the Arduino side . A baud rate of 9600 ensures communication
with a low error rate. The Arduino sends an acknowledgment message after every successfully
received message and an error message after corrupted messages. However, as it is a closed
system without huge communication distances or wireless transmission, the communication is
generally rather simple. Figure 5.8 shows the connection schema of the components. For the
built prototype, the power is provided by standard V-mount batteries. They are used because of
their standardized mounting system, which provides fast-changing batteries and a tight physical
connection when mounted, which is important with a rotating robot. As V-mounts provide
14.4 V, and to protect all components, a voltage stabilizer is put between the battery and the
12 V distribution point.
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Figure 5.4: Photos of the Prototype without shell.
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Figure 5.5: Photos of the Prototype with shell.
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Figure 5.6: Blueprint of the prototype with the rolling modification without the spherical shell.
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Figure 5.7: Photos of the Prototype with the small middle disc for the rolling tests.
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Figure 5.8: Diagram of general electrical and data link between components. Yellow: USB connection.
Black and Red circle: 12 V voltage supply. Green dotted line: GPIO connection.
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102 Chapter 5. Prototype

Figure 5.9: Concept of the inchworm motor, using the piezoelectric effect [60]. LCA, LPV, and RCA
are three contractible and expandable units. With the shown sequence of contracting, releasing, and
expanding of the three units, the pole is shoved to the right side.

5.2.1 Actuator

The TLDR prototype holds 16 linear telescopic actuators. In principle, there are multiple
suitable actuator types, as there are only three absolute necessary requirements. First, the
speed of extension and retraction needs to meet the requirements for the desired rotation speed,
for which Subsection 4.1.1 contains the calculation. The needed speed decreases by forgoing high
omegas or changing the α and β values, but there will always be a requirement of minimum
available speeds. Secondly, the strain of an actuator. It depends on the requirements of the
robot whether it needs to push itself straight up, or other procedures requiring a certain force of
an actuator. Third, the required maximum possible extension must be reached, which leads in
all configurations calculated in Subsection 5.1.1 to the need for some telescopic extension, as the
required length of extension exceeds the length of the fully retracted actuator. The first two basic
requirements may be achievable with just the right scaling of an actuator. However, the third
requirement excludes some actuators, which basic working principle does not allow telescopic
extensions and mostly focuses on small, sometimes ultrasonic, movements like magnetostriction-
based motors [41][82][42]. Others focus on slow but powerful movements like mechanicochemical
actuators [76]. Others just have not been investigated for telescopic linear use like piezo motors
(piezoelectric actuators) [60][73]. The piezo motors have high power, good controllability, are
constructed very small, and provide a sufficient extension and retraction speed for this kind of
robot. There are different kinds of implementations. Figure 5.9 shows one of them, the inchworm
motor.

Permanent magnet motors or magnetostriction-based motors that do not focus on ultrasonic
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Figure 5.10: Concept of o SMA telescopic linear actuator by Spaggiari et al.[72]. The coils shrink if
put voltage on and expand otherwise. Two coils connect each extension stage (green and red complexes)
to the next stage. By shrinking one and expanding the other, the stage extends or retracts.

speed also do not have developed specific telescopic mechanisms [26]. Besides these hard re-
quirements, there are further requirements on a more practical basis. Of course, the actuators
need to be available as there are very promising linear telescopic actuator approaches. However,
they are still in the conceptual stages, like SMA-based linear telescopic actuators [72], or the
beforementioned telescopic piezo motors. The SMA-based approach is a promising concept,
which is designed to produce high torques and fast speeds. Also, the dimensions the concept is
for match the dimensions of current spherical robots. Figure 5.10 shows this concept.

Also, the cost-effectiveness needs to be kept in mind, as in the low-cost segment, linear
motors are often more expensive than rotating motors since there is just a small field of low-cost
linear actuators [17]. Also, side effects often occur, for instance, magnetostriction-based motors
often impact other sensors due to the strong magnetic field [47]. This leaves the three most
widespread technologies: hydraulic, pneumatic, and direct electric linear actuators. Hunter et
al. describe in [32] the difference of possible force of hydraulic, pneumatic, and electric linear
actuator as a ratio of 1000 (hydraulic), 35 (pneumatic) to 1 (electromagnetic). Of course, this
is always highly dependent on the actually used components, but it gives a rough overview of
the relationship. Hydraulic and pneumatic telescopic cylinders both have the option of single-
acting and double-acting. This means that either the pressure of the system pushes out the
cylinder, and the retracting happens by external forces, like the loading area of a dump truck
pushing back, or there are two inlets for pressure, one extending and one retracting. As there
is no continuous external force, ensuring retraction, the pneumatic does not do single-acting for
the TDLR robot. For the hydraulic, the retraction of a single-acting cylinder is possible with
the pump rotating backwards. This leads to each cylinder having its own pump or complex
structures. Also, an initial test with low-cost hydraulic telescopic linear actuators shows that
the retraction only works unreliably as the cylinder gets caught in itself, as the structure is
not built for internal low pressure for retraction. Regardless of whether operated hydraulically
or pneumatically, double-acting telescopic cylinders exceed the price of electric actuators by
a huge margin. Therefore, we chose the electric telescopic linear actuator for the prototype.
Figure 5.11 shows the chosen actuator, made by the company Solvig. It consists of a coil, which
is to a certain degree flexible, wound up on a rotational motor. Rotating the motor leads to
unrolling the coil, and it is shoved into a telescopic cylinder, which is then pushed outwards. Like

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



104 Chapter 5. Prototype

Figure 5.11: Linear telescopic antenna motor manufactured by Solvig.

Table 5.4: Data-sheet of the linear actuator by Solvig. The * marked values are measured, all others
are from the manufacture data-sheet.

Parameter Value

Maximum Extension 95 cm

Number of Extensions * 8

Dimensions 35 cm x10 cm x5 cm

Voltage 12 V

Power consumption while extension * 10 W

Extension Speed * 0.15 m/s

Retraction Speed * 0.15 m/s

the most used, screw-based linear motion of electrical linear motions, other electrical approaches
are limited in speed and the possible number of extensions. The chosen mechanism is, in its
basic principle, extendable to any number of extensions. It just needs to be ensured that
the telescopic sleeve has enough tension. Table 5.5 lists the properties of the actuator. Each
actuator has three input cables. Ground (black), power (red), and signal(green). The ground is
connected to the negative terminal of the battery. Power and Signal are switched independently
by the relays. The corresponding behavior of the actuator is shown in Table 5.4. The actuators
provide no feedback for their current status. Therefore, the only way of estimating the length
of the extension is integrating the extension speed over time. The powering of the actuator

Table 5.5: Behaviour of Actuator by Solvig with activation of Signal and Power line.

Signal high Signal low

Power high Extension Retraction

Power low Hold Hold
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Figure 5.12: Prototype in the normal configuration (left) and collapsed configuration for trans-
port(right).

without actual extension is problematic. This is the case if the actuator tries to extend into the
ground. The software-based estimation of the length will then miscalculate the length. This
overall behavior leads to the unreliability of the estimated length. Therefore, the evaluations in
Chapter 6 will only show linear extension, even if no actual extension happened. Without further
proof, measuring the resistance of each pole or voltage when applied did not help estimate the
current length of a pole. The measured values did not correspond directly to the length, and
the poles themselves differed from unit to unit significantly.

5.2.2 Structure

The overall weight of the robot is 37.85 kg (inner structure 20.70 kg and shell 17.15 kg). The
weight of all 16 motors together is 12.24 kg. The weight of the inner structure is the same for
the both versions. The aluminum discs of 3mm provide a good ratio of stability and mass.
The three discs are connected by 16 M10 screws with quick-releases on the middle disc side on
the screw part between middle and side discs. This enables a quick fold-up for transportation.
Figure 5.12 shows this collapsed state.

The variable fixation also enables the fast construction and installation of further middle
discs with different sensors and/or dimensions. Later, they were replaced by self-securing nuts
for better stability. The discs themselves have cut-out areas to reduce weight. Due to the lack
of sufficient mounting options of the actuators, the shape of the main part of the actuator is
cut out of the side disc, and the actuator is pushed into it with force. To ensure the right
positioning of the rod itself, the end of the guide tube of the actuator is mounted to the side
disc. The structure is put into the spherical shell, consisting of two halves. As the discs fit the
inner diameter of the shell, there is no need for further fixation since there are no huge internal
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forces.

5.2.3 Pose-estimation

The prototype uses only IMUs as sensors for pose estimation. This raises problems regarding
the position-estimation, as IMUs have no absolute reference for the position in contrast with
their orientation-estimation, which has the gravitational vector and magnetometer as absolute
reference. And double integration of the accelerometer, which leads in theory to the position,
leads to exponential error addition and therefore an unusable position estimation. The spherical
robot is a special case, as here, the rotation speed and translation speed correspond to each other
as rolling with ω leads to a translation of ω · r. This is only for spherical/cylindrical robots.
Based on this assumption, pose estimation is possible with just IMUs if the z-axis is fixed. [88]
contains an algorithm and further explanation. For our evaluations, we focus primarily on ω and
θ, which do not need a position estimation. As later, the goal is to use VPIM for controlling,
there exists a map and sensor, which a SLAM algorithm then uses for pose estimation. This is
more precise then the pure IMU-based evaluation and provides an absolute reference. The IMU
is a possible further input to a filter and enables interpolating between SLAM-estimated poses.
This all leads to better map generation from which also VPIM will in turn benefit [49].
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Evaluation

6.1 Locomotion

6.1.1 Push Only

The first experiment for evaluation is using the push-only algorithm (Algorithm 1). The pa-
rameters of the algorithm are β = 2 ◦ and α = 57 ◦ Due to the eight rods, an alpha of 47 ◦ is
the push-only-single algorithm (Algorithm 2) and is evaluated separately. Figure 6.1 shows the
result for a flat, sealed ground with a low grip.

The extension itself is only an estimation as there is no real feedback providing the length of
a certain pole. Therefore, the theoretical length of the pole is computed using the extension and
retraction time. The flat ground experiments show huge perturbations with a maximum ω of
about 0.4 rad/s. This is due to a slip each pole experiences when it is in contact with the ground.
In other words, the pole bends as its tip slips over the ground until the bend is big enough so that
further bending requires more force than initiating rotation. Figure 6.2 depicts this behavior
where the pole slips over the ground without leading to rotation. Having rather big obstacles
(stones etc.) or having just ground with increased grip (outdoor, rough asphalt, etc.) does
not allow, or at least minimizes, such behavior. At some point, the pole tip gets canted, even
if only minimal. Therefore, the same experiment was performed on the ground with wooden
floorboards and on the gravelly ground. Figure 6.3 shows the result for the wooden floorboard,
whereas Figure 6.4 shows the result for gravelly ground .

The sliding behavior of the poles does not happen on the grounds with more grip, as there
is no or only minimal sliding of the poles. Figure 6.5 shows this for the gravelly surface. The
rotation starts with the pole end only moving minimal in comparison to Figure 6.2, where much
more slip does not provide any rotation. Additionally, the minimal change of position of the
pole end happens with a relatively quick jump, in contrast with the slow, continuous slide on
the flat ground . Therefore, the overall speed is higher with way fewer perturbations. The
achieved ω is for the wooden floorboard at about 0.7 rad/s and for the gravelly at about 1 rad/s.
The remaining small oscillation is a result of the mono-speed problem, which Subsection 4.1.2
described. The problem for both surfaces with high grip is the repeatability of the experiments,
as the description of a wooden floorboard and gravelly is imprecise in terms of its grip. For the
flat, sealed ground, the grip itself is also not well defined, but at least all geometrical aspects are
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Figure 6.1: Robot on a hard, flat surface with less grip. Above: Extensions of prototype with push-only
approach with α=57 ◦ and β=2 ◦. The prototype starts out of a standstill. Below: measured ω of the
same experiment.

defined since it is just flat with no obstacles. The quantitative description of grip, the coefficient
of friction, does rely on the measured object, and its measurement is difficult for moving, in this
case rotating, objects [18]. As prototypes are likely to use different actuators, the coefficients of
friction will not be measured with the pole tips of this prototype. The huge differences in the
behavior, such as the different ω, or the different strength of oscillation, are less the result of
the grip itself. The surface touching the ground is minimal, and therefore the frictional force is
minimal. The behavior is due to the missing sliding of each pole as they run into unevenness
or obstacles on the ground. Further, a smoother surface is beneficial for the leverage algorithm,
where no pole pushes into the ground. Therefore, all further general experiments are performed
on this ground. A larger α of 67 ◦ for all experiments does not impact the reached ω as the pole
does not touch the ground anymore.
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Figure 6.2: Demonstration of the slip and bend behavior of the rods on flat, sealed ground. The poles
extend and bend, but no rotation is initiated.
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Figure 6.3: Robot on wooden floorboard surface. Above: Extensions of prototype with push only
approach with α=57 ◦ and β=2 ◦. The prototype starts out of a standstill. Below: measured ω of the
same experiment.

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



6.1. Locomotion 111

 = 57o,  = 2o, c  = 0.4 rad/s, ground: wooden floorboard

0 2 4 6 8

time in s

0

0.2

0.4

0.6

0.8

1

E
x
te

n
s
io

n
 i
 m

0

0.5 

1.5 

2 

 i
n
 r

a
d

extension of pole

possible extension

0

0.5 1.5 
ha

lf 
ex

te
ns

io
n

fu
ll 
ex

te
ns

io
n

0 1 2 3 4 5 6 7 8

time in s

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

 i
n
 r

a
d
/s

Figure 6.4: Robot on a gravelly surface. Above: Extensions of prototype with push only approach
with α = 57 ◦ and β = 2 ◦. The prototype starts out of a standstill. Below: measured ω of the same
experiment.
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Figure 6.5: Demonstration of the slip and bend behavior of the rods on gravelly ground. As the poles
extend, the angle of the robot changes.
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Figure 6.6: Robot on a hard, flat surface with less grip. Above: Extensions of prototype with push only
approach with α=47 ◦and β=2 ◦. This corresponds to a single rod use at once. The prototype starts out
of a standstill. Below: measured ω of the same experiment.

6.1.2 Push Only Single

Using an α=47 ◦ and β=2 ◦, leads to the push-only-single algorithm (Algorithm 2). Figure 6.6
shows the results for a extension between 2 ◦ and 47 ◦ and Figure 6.7 shows an extension between
0 ◦ and 45 ◦. We see that the one with β=2 ◦ has significantly fewer perturbations than that
with β=0 ◦. This is the behavior described before: the extension at 0 ◦ does not lead to a rotation
but does lead to internal tension, which increases as the actuator pushes without extensions.
If the ζ angle increases, the pole extends with the previously built internal tension. Therefore,
the acceleration is too fast for the extension of the pole, and it does extend without contact
with the ground. This does lead to the oscillation seen in the plotted ω. Increasing both
angles to an extension between 5 ◦ and 50 ◦ leads to the behavior shown in Figure 6.8. In this
case, a big oscillation occurs, which decreases rapidly. The overall speed is slower, which is the
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Figure 6.7: Robot on a hard, flat surface with less grip. Above: Extensions of prototype with push only
approach with α=45 ◦ and β=0 ◦. This corresponds to a single rod use at once. The prototype starts out
of a standstill. Below: measured ω of the same experiment.

behavior Figure 4.9 showed before. This shows that choosing β either too large or too small is
counterproductive. Therefore, we take 2 ◦ as value for further experiments. The purpose of this
single-rod use approach was to provide a solution for mechanically restricted systems. As our
prototype does provide individual actuators and has no limitation of simultaneous extensions,
this special case of the pushing approach will not be further evaluated as its own approach, but
will just be referred to as a push-only approach with these specific values.

6.1.3 Leverage Only

For the TLDR prototype, the extension of the poles on the side to which the prototype rolls,
generates enough torque to lead to rotation. However, when at a pitch of 0 rad, extending the
pole with ζ of 5

8π rad or 3
2π rad on its own is not enough. Figure 6.9 shows the behaviour when
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Figure 6.8: Robot on a hard, flat surface with less grip. Above: Extensions of the prototype with
push-only approach with α=50 ◦ and β=5 ◦. This corresponds to a single rod use at once. The prototype
starts out of a standstill. Below: measured ω of the same experiment.

the pole at 5
8π rad is at full extension, and the one at 3

2π rad is extended. We see that only at
nearly full extension the rotation of the prototype starts. This leads to a problem as the γ is
smaller than 1.5π rad. Just ignoring this leads to an uncontrollable movement of rolling back
and forth. The prototype rolls onto its extended poles, which bend to a certain angle at which
they begin bending back to the original position, causing rotation in the opposite direction. The
backward rotation will slow down and turn into a forward rotation, but with an already retracted
pole, this specific pole will now retract enough not to block the further rotation. Unfortunately,
the next one will. Figure 6.10 shows this behavior.

This does not mean the leverage approach is not suitable for this prototype. If the rotation
of the prototype is initiated manually, the leverage approach maintains the rotation, respecting
the calculated γ, ǫ, and ǫs, but this is only if the (too) fast acceleration is taken into account.
This results in the solutions, which Section 4.1 discussed: using a simulation or implementing
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Leverage, c  = 0.4 rad/s
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Figure 6.9: Leverage approach with a slow start. The pole at about 3
2
π rad is shown, while the one at

5
8
π rad is fully extended all the time. The rotation starts very slow. The ω grows exponentially, which

is too fast for the retraction of the pole, leading to it contacting the ground at about 16 seconds, which
leads to a rotation backward.

empirical boundaries, Both lead the approach of calculating exact angles values to absurdity.
In contrast with the pushing approach, the leverage approach is not suitable as a standalone
locomotion approach. Therefore, this prototype uses leverage only as an addition to the push
approach if the robot does not generate enough torque by pushing.
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Leverage, c  = 0.4 rad/s
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Figure 6.10: Leverage approach with bouncing behavior. Each visualized pole leads to one bounce and
hence negative rotation. The first hits the ground at 9 s, the second at 14 s, and the third at 22 s.
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Figure 6.11: Conducted outdoor experiments. Above: grass and for additional experiment trunks as
obstacles. Below: stones. All experiments were unsuccessful.

6.1.4 Push and Leverage

Due to the extremely fast acceleration with the leverage-only approach, the evaluation of the
push and leverage approach together was unsuccessful. The same behavior as with the leverage-
only algorithm occurs with initial tests, i.e., pole retraction is not fast enough once acceleration
starts. Together with the pushing, the actuators experience more force than during the leverage-
only approach; thus, the pushing increased the bending of the poles even further. This leads
to irreversible damage to two poles that needed to be replaced. Therefore, no measured data
is available, and the approach was not investigated further on flat ground. The experiment
was performed for uneven ground/outdoor experiments with rougher terrain than a hallway or
street as the acceleration is much more damped due to the softer underground. All tests were
unsuccessful as no rotation was initiated at all, despite using leverage and pushing approaches
simultaneously. Figure 6.11 shows the conducted experiments with no further data as no rotation
was initiated.

Further experiments tested the capability to climb slopes.
We used a ramp with increasing tilt to perform climbing attempts on different slopes. First

experiments were performed with α = 57 ◦ and β = 2 ◦. However, on the ramp, there is a gap
between the pole of ζ = 0 ◦ and the ramp due to its inclination. This means an extension at 0 ◦
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Figure 6.12: ω of the slope test for pushing only with α = 57 ◦ and β = 2 ◦(left) and α = 67 ◦ and
β = 0 ◦.

does lead to rotation. Also, α was increased as ω goes towards 0 rad/s at the end, which enables
even high α to still touch the ground. Figure 6.12 shows the difference between both values of
α and β. The similar behavior of both is noteworthy, as the same changes in values lead to
huge differences in the flat evaluation in Subsection 6.1.1. The rolled distance on the slope with
increasing inclination was the same, and both achieved an inclination of 2.5 ◦. Therefore, for the
further evaluation of the slope, we took the theoretically superior α = 67 ◦ and β = 0 ◦. The
starting position has a crucial impact on the achieved inclination as it impacts the end position
at a certain inclination, which determines if a new pole starts extending or not. Therefore,
after this experiment, the starting position was empirically optimized, and therefore the final
evaluation shows higher achievable inclinations. Figure 6.13 shows the results from using only
leverage only, only pushing, and both together.

Of course, a full distance at the given inclination would result in more accurate data of
the robot than with a raising inclination of one track. Still, we want to focus on the relative
behavior and achieved values between the approaches, rather than on accurate absolute values
for this specific prototype. Leverage only achieved 1.3 ◦. Pushing 3.6 ◦ and Pushing and Leverage
combined achieved 3.7 ◦, which is in the range of the theoretical calculated values provided in
Subsection 4.1.5, which estimated for leverage 0.92 ◦ and for pushing 4.1 ◦.
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Figure 6.13: Slope experiments. The robot rolls up a ramp with increasing slope. The slope is then
measured with a water level at the place where the robot stops. Top: Leverage only locomotion. Achieved
inclination: 1.3 ◦. Middle: Pushing only locomotion. Achieved inclination: 3.6 ◦. Bottom: Pushing and
Leverage locomotion. Achieved inclination: 3.7 ◦.
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Figure 6.14: Irreversible damage after a roll onto extended poles.

6.1.5 Braking

First tests of braking showed the incapability of the poles to support the weight of the robot,
even with slow rotation speeds. As this leads to irreversible damage (see Figure 6.14), no further
experiments are conducted regarding braking.

6.1.6 Friction

To test the influence of the friction of the pole with the ground µPole, rubber surfaces are attached
to the pole ends. Figure 6.15 shows the pole ends and the corresponding ω on the same flat
ground.

With rubber, the overall rolled distance is less, and the data is noisier. This is counter-
intuitive to the assumption that more grip leads to better rotation. This is explained by the
small oscillations, which always occur when the robots exactly roll over one pole (ζ = 0). The
robot is raised minimally, expending energy that would otherwise be used for transversal motion.
Therefore, the experiment needs to be conducted again with the overall robot in the spherical
shape. Other factors like balancing may influence this, but an evaluation is not possible with
the given prototype.

6.2 Balancing

The first short evaluation regarding balancing is the one targeting the three, and five-point
approach explained in Section 4.2 with Figure 4.25 and 4.26. Figure 6.16 shows the result.
Further experiments with a three-point stabilizing approach will only be conducted with a
spherical shell, as in this case, the tip-over is usable in interaction with locomotion.

Therefore, the following evaluations are with respect to the basic balancing of the same disc-
size robot with the middle disc lifted. Figure 6.17 provides the result of stabilizing the φ of the
robot.

The φ is kept constant quite well. After initial fast changes between the states, the robot
gets to a pose at which it has balanced itself. It is noteworthy that this stable pose has the
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Figure 6.15: Friction experiment on the cylindrical (small middle disc) prototype. Above: plain pole
ends. Below: with rubber attached.

pole at state "Hold," and not extending all four poles continuously, which also has the possibility
to bring a stable pose but also of damaging the actuators, and is more power-consuming. As
stated in Section 4.2, it is crucial to maintain the poles, which are at the moment responsible
for balancing due to their θ, at l(θ) = lbalance(θ), even if ǫφ is small, to keep a fast interfering
actuator if ǫφ becomes too big. For the same reason, the retraction shall never undercut rm −rs.
Figure 6.18 shows what happens if these values are undercut.

The φ does not exceed the geometrical possible φcatastrophic, nor the limit φ given by the
strength of the poles. However, it does oscillate between 0.04π rad and −0.03π rad. The initial
peak, initiated by a manual push, is intercepted at 0.05π rad. This was done using a smaller
rm than the real value, which leads to a smaller lbalance(θ) and a smaller rm − rs. Figure 6.19
shows the middle position, as well as both extreme points of the oscillation. As a stable φ is the
optimum and shows the capability of the actuators to stabilize the robot, we will not perform
further experiments regarding balancing on the small prototype. We re-evaluate this case with
the real spherical robot. For the balance experiment, the result of the evaluation we expect the
outcome to be nearly the same.
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Figure 6.16: Tip-over with three-point stabilization. The red dashed line, crossing all five pictures,
shows that the touch-point stays at the same position. Therefore sliding of the pole is not a problem.
The abstraction shows the contact points of the poles and the shell with the ground (red square), the
center of mass (red dot), and the stable area for the center of mass (green area). The pink and blue
lines represent the two side discs with the corresponding poles. If they are continuous, they represent an
extended pole. The green dotted line indicates that no line crosses all contact points. The red dotted
lines if one line crosses all contact points.
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Figure 6.17: Balancing evaluation without spherical shell. Above: Estimated length. Below: Status of
the pole. Both: φ.
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Figure 6.18: Balancing evaluation. Above: Estimated length. Below: Status of the pole. Both: φ. For
this experiment, the lbalance was calculated too short due to a too-small rm.

Figure 6.19: Evaluation of balancing with too small evaluated lbalance(θ) and rm − rs. Left: minimum
φ. Middle: optimal φ. Right: maximum φ.
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Figure 6.20: Balancing evaluation of the complete system with no locomotion.

(a) (b)

Figure 6.21: Left: Leverage approach used with the full sphere prototype. No rotation was initiated.
Right: End-status of the push-only locomotion of the full robot with shell. The poles do not have enough
force to generate rotation at this point.

6.3 Complete System

We made all previous evaluations with the cylindrical prototype. The complete system with the
spherical shell shows bad to no controllability and overall unusable behavior. We will discuss
the reasons for this, but not re-evaluate each previous experiment.

The only successful demonstration is the pure balancing. Figure 6.20 shows the results of a
balancing procedure. The roll error is kept under 0.05π rad.

For locomotion, we again differ between push-only, leverage-only, and push and leverage
approach. Using only leverage does not lead to any movement of the sphere, as the weight is
significantly increased compared with the smaller prototype due to the shell. Therefore, the
extended poles do not generate enough torque. For the sake of completeness, Figure 6.21a
shows the non-changing state. The push-only approach leads to a slow rotation but only until
the point where a certain φ is reached at the same time where one rod is more extended than
its pendant on the other disc and starts bending. In this case, the rotation does not proceed
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Figure 6.22: Push only approach with the full spherical prototype.

as the rods on the lower side do not have enough power to push against the one on the high
side. Therefore, the force of those more extended poles leads to more roll and it then stalls at
a certain point. Figure 6.21b shows this state. It does not depend on a certain roll angle but
more on the described certain case, which in all test runs occurred within the first rotation, but
at different roll angles. To stress this, Figure 6.22 shows the ω and roll angle. The roll angle
at the end, at which the stall happens, is not the maximum as the robot reached higher values
before, which are empirically confirmed.

With pushing and leverage, this point is overcome as enough torque is generated. Unluckily,
this leads to further rotation in the direction in which the push-only experiments stall and lead to
a complete roll onto this side, way over the φcatastrophic. This also interacts with the outstanding
parts on the side of the sphere, which are used to tighten the two sphere halves. However, even
without the rim, this leads to unusable, uncontrollable behavior. Figure 6.23 shows the sequence
of these events.

These four evaluations, the working balancing, the not strong enough pushing algorithm and
leverage algorithm, and the strong enough but overturning push and leverage approach, lead
to the evaluation of balancing with push and leverage locomotion. Figure 6.24 and Figure 6.25
show two test runs of the experiment.

The balancing prevents the roll from getting out of control, but in both cases, after less than
0.25 rad, they get to a point where the systems stall. However, in contrast to the push only, this
is an active situation. The sphere starts pushing itself into a not acceptable roll. Therefore the
balancing algorithm retracts the pole on the higher side. The pole on the lower side still pushes,
as the balancing algorithm as well as the locomotion instructs this. The upper parts of the
evaluations show this pole. It tries to extend constantly in the second half of the experiments.
However, this extension is not enough to initiate rotation. As the pole on the other side extends
again to bring up enough force to start the rotation, it just pushes the sphere again into the roll
angle. In the first run (Figure 6.24), this leads to a constant oscillation of roll and pitch. This
is not a clear oscillation in the second run(Figure 6.25) but still the same sequence. Therefore,
the ground laying problem of the push-only algorithm is that two poles on a tipped over side do
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Figure 6.23: Push and Leverage locomotion approach for the full robot with shell on flat ground.

not have enough power to start rotation and turn the sphere upwards again sufficiently.
As the small prototype showed an improved behavior on gravelly ground as the poles transmit

force more directly in comparison with the flat ground, the full sphere is also tested on the same
ground. With the full sphere, there is no real improvement. The push and leverage algorithm
with stabilization still has not enough power to start rotation and stalls. Figure 6.26 shows this
state. With stabilization, the same oscillating sequence as on the flat ground happens, leading
to the same shortcomings of the prototype.

Nevertheless, the uneven ground outside, together with the imbalance of the spheres shell,
gives the opportunity to place and orient the sphere empirically by hand such that just minimal
force is enough to start rotation. Therefore, the resulting test run gives no generally valid
statement for the behavior of the sphere but gives an outlook of possible behavior if the poles
have enough strength. Right after starting the rotation, the acceleration is too fast for the poles,
so they extend without ground contact. The imbalance leads to a left curve of the robot, which is
uncompensable as at the crucial moment, no rod can perform stabilization. The sphere leaves the
φcatastrophic range shortly after but has performed a yaw change of nearly 0.5π rad. This shows
that the poles on the front of the rotation need to slow down too fast accelerations and speeds
as no stabilization is possible otherwise. Figure 6.27 shows the sequence of described events.
In picture three of the figure, the pole responsible for the stabilization is visible, extending
into the air with a roll angle, at which stabilization is difficult. This stresses the point of the
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possible usage of VPIP, described in Subsection 4.3.2, as it uses poles in the front and back of
the rotation. This requires variable speed poles.

The last point that the outdoor experiments showed is the damage to the poles increases.
When extending but there is no rotation of the robot, they do not glide over the ground as they
anchor into the ground. This leads to more damage to the poles. Figure 6.28 shows two initially
undamaged poles after approximately 30 seconds of the oscillating state of the stabilization and
locomotion test on the gravelly ground. We did not discern this kind of damage on the flat
ground experiments.

6.4 Summary

The ground-laying algorithms and approaches for locomotion work if evaluated isolated from
stabilizing on the cylindrical robot. For the cylindrical disc prototype, this is the case for all
three approaches (leverage only, push, only, push and leverage). The rotation speed is rather
variable due to the flexibility of the rods and the lack of variable extension and retraction speeds.
Also, the rotation acceleration is highly dependent on the chosen ground. The used poles show
a low acceptance of external force applied to them, which leads to breaking the poles once the
sphere rolls onto extended poles. In some cases, the poles break just by their own extending
force.

The basic balancing algorithm works for the unstable disc setup and for the full spherical
setup. Here, the pole strength is enough to provide controllability of the roll angle. Therefore,
the end-roll angle is stable and not oscillating.

The evaluation of the locomotion for the full spherical setup shows no movement of the
leverage-only approach as the weight is significantly higher with the spherical shell than for the
disc setup. With the push-only approach, the sphere pushes itself into a stall position. When
adding the leverage approach, the prototype overcomes the stall position but goes directly into
a non-compensable roll, leading to the overall failure of the locomotion.

Using the stabilization and push and leverage approach avoids this non-compensable roll
angle. Still, as the poles on a single side are not strong enough to lead to rotation, the robot
oscillates at a certain state, as pushing on the higher (due to roll) side is needed for locomotion
but leads to too large roll.

Therefore, we assume the following points as the main reasons for unsuccessful implementa-
tion of the full spherical prototype in order of significance :

• Too low power of the poles.

• Imperfect shape and mass distribution of the shell.

• Too high mass of the whole robot.

• Too high flexibility of the poles.

• Lack of feedback of extension of poles.
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Figure 6.24: First combined locomotion and balancing of the full spherical prototype.

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



6.4. Summary 131

b
 = 57o, 

b
 = 2o, status-evaluation

0 5 10 15 20 25

time in s

Hold

Extend

Retract

Position

ExtendFruitless

s
ta

tu
s

-0.2 

-0.1 

0

0.1 

0.2 

 i
n

 r
a

d

status of pole

-0.2 -0.1 0 0.1 0.2 

 in rad

0 5 10 15 20 25

time in s

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

 i
n

 r
a

d
/s

, 
 i
n

 r
a

d

rolled distance (integrated): 0.2411 rad

Figure 6.25: Second combined locomotion and balancing of the full spherical prototype.
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Figure 6.26: Endpose of the sphere outside with the push and leverage approach and stabilizing. The
force of the poles is not enough for further rotation.

Figure 6.27: Push and Leverage locomotion approach for the full robot with shell on gravelly ground.
The starting position of the sphere was optimized empirically by hand as the start position exploits the
imbalance of the sphere and the not optimally flat ground to its advantage.
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Figure 6.28: Deformed poles after pushing on gravelly ground. The deformation happened due to their
own force.
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Chapter 7

Conclusions

This thesis introduced the TLDR robot. Based on the DAEDALUS project, the general scope
of application and the overall advantages of this robot were identified. The mathematical and
physical models were derived, showing the capabilities and limitations of such a robot in terms
of locomotion and balancing. For both aspects, the formulas provide help for dimensioning this
and similar robots, as well as possible speeds, slopes, and obstacles. All formulas leave plenty
of room for fine-tuning for a specific robot. The concept of VPIP was introduced as a control
strategy for the TLDR robot with a virtual plane. We also gave an outlook on VPIM, which
extends the virtual plane to a map. The prototype was designed, described, built, and tested for
various scenarios. The prototype shows the feasibility of the concepts but has huge limitations
due to the sub-optimally chosen actuators. This often leads to outcomes of experiments due to
peculiarities of the actuators rather than conceptual influences.

The movement of the TLDR robot has more potential with variable speed poles, as there
are many constraints regarding the mono-speed problem. Then, a fruitful combination of the
pushing and leverage approach is possible. The described and calculated braking techniques of
the robot often stress the poles if mono-speed poles are used. This needs to be improved for those
specific poles in order to enable efficient and material-friendly braking. The slope estimation
gives limits of the possible inclination, which were later met by the evaluations. The obstacle
evaluation shows new approaches to overcome obstacles and gives the TLDR robot, in theory, a
wide range of locomotion possibilities. Strong enough actuators are necessary to verify this as
the built prototype did not give any chance of obstacle evaluation. Balancing showed expected
good behavior despite using basic control structures. For combining balancing and locomotion,
we introduced the idea of a virtual plane controlling the robot, the virtual pose instruction plane
(VPIP), and established a mathematical solution. Primary calculations indicate its suitability
as a control method. A possible control law was described, but we assume it to highly depend
on the specific robot. The concept introduces two controllable parameters (roll and pitch of
the plane), whereas the other concepts for combining balancing and locomotion have no real
parameters that can be used for controlling and are just simple algorithms. We then extended
this idea to include not a plane, but a whole map of the near environment, leading to the virtual
pose instruction map (VPIM). Open points were analyzed and described, as well as the overall
idea of generating this map in situ using LiDAR sensors. This leads to the fruitful symbiosis of
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LiDAR sensors as a scientific payload and sensors for the control mechanism. This opens huge
possibilities for overall robot systems, as they do not have to plan sensors for control tasks and
additional payload sensors. Both domains, the payload and robot itself, benefit as this double-
usage opens multiple possibilities of using the gained space inside the robot: for redundancy
of the sensor by adding further LiDAR-sensors, for optimizing the external dimensions of the
robot, which may enable other routes, or for adding other mechanisms supporting the robot and
therefore scientific data generation.

The prototype was described in terms of its design decision, structure, and components.
For the actuator, we discussed different solutions and approaches. The prototype relies on
low-cost linear actuators, which turned out to be a sub-optimal choice, as often peculiarities
and characteristics of the actuators defined behaviors of the robot, and huge parts of the used
code only deal with the peculiarities of the poles. The power was sufficient for the cylindrical
prototype experiments, with the exception of the perpendicular obstacle experiments, as this
was to be expected since it requires multiple times the power provided. For the full sphere,
the single poles had too little power for locomotion. The main problems identified were the
slow extension and retraction speed, as well as the most obstructive flexibility and low break-
resistance of the poles. Also, the lack of feedback on the current pole length made controlling
and evaluation difficult and imprecise.

Needless to say, a lot of work remains to be done. Further research needs to include a more
robust version of the prototype, especially targeting the more stable and powerful actuators.
With this, the evaluation of steady rotation speeds, which are not achievable with the given
prototype due to the mono-speed actuators, becomes possible. Also, further research needs to
investigate the combination with internal weight-shifting in more detail. The first step is to
evaluate the already described calculated VPIP approach on a prototype and then target the
open points described for VPIM. Also, the integration of a sensor platform, most likely LiDAR,
into the prototype and the efficient symbiosis of both leaves much room for research. All in all,
VPIM, if initial tests are successful, seems to be a promising approach for the TLDR to become
a robust locomotion approach that makes good use of the given environment, which can then
be used as a baseline especially for tough, unknown terrains.
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Appendix A

Code

Listing A.1: Matlab simulation for rod extension

1 clear all;

2 close all;

3

4 alpha = 57;%deg

5 beta = 2;%deg

6 maximumLength = 3;%m

7 radius = 2;%m

8 speed=20; %m/s (maximum speed of extension and retraction)

9 minspeed=0; %m/s (minimum speed of extension and retraction)

10 %desired omega, for this simultaion omega will be constant if achivable by

11 %pushing

12 omega =1;%rad/s

13 tEnd=8; %s (simulation duration)

14

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%

16 hz = 100;

17 zeta = 0;%current angle

18 if(minspeed>speed)

19 minspeed=speed;

20 end

21 speeddt = speed/hz;

22 minspeeddt = minspeed/hz;

23 gamma= 0;

24 epsilon=0;

25 l=0;%currentlength

26 alpha = alpha/360*2*pi;

27 beta = beta/360*2*pi;

28

145
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29

30

31

32 for(t=1:tEnd*hz)

33

34 gamma= getNextGamma(speed, radius, omega);

35 epsilon = getNextEpsilon(gamma, omega, radius, maximumLength, speed);

36

37 l=getNextLength(l,zeta,speeddt,minspeeddt,speed, maximumLength, ...

alpha, beta,epsilon, gamma, radius, omega);

38

39 zeta= getNextZeta(zeta, omega, hz);

40

41 lengthArray(t)=l;

42 zetaArray(t)=zeta;

43

44 %plot maximum possible extension. Negative(to the sky) are suppresed

45 realArray(t)=radius/cos(2*pi-zeta)-radius;

46 if(realArray(t)<0||realArray(t)>maximumLength)

47 realArray(t)=nan;

48 end

49

50

51

52 end

53

54

55 %just plotting

56 time= linspace(0,tEnd,tEnd*hz);

57

58 t=tiledlayout(1,2);

59 t.TileSpacing = 'compact';

60 nexttile

61 hold on;

62 yyaxis left

63 plot(time,lengthArray);

64 plot(time,realArray);

65 ylabel('Extension i m')

66 yyaxis right

67 plot(time,zetaArray);

68 ylim([0 2*pi]);

69 ylabel('\zeta in rad')

70 yticks([0 (0.5*pi) pi (1.5*pi) (2*pi)])

71 yticklabels({'0','0.5 \pi','\pi','1.5 \pi','2 \pi'})
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72 xlabel('time in s')

73

74

75 legend({'extension of pole','possible ...

extension','\zeta'},'Position',[0.825 0.74 0.17 0.2])

76

77 nexttile;

78

79 polarplot(zetaArray,lengthArray,'Color',[ 0 0.4470 0.7410]);

80 hold all;

81 polarplot(zetaArray,realArray, 'Color',[0 0.4470 0.7410],'LineStyle', '--');

82

83 ax = gca;

84 hold(ax)

85 d = ax.ThetaDir;

86 ax.ThetaDir = 'clockwise';

87 ax.ThetaZeroLocation = 'bottom'

88 thetaticks([0 90 180 270])

89 thetaticklabels({'0','0.5 \pi','\pi','1.5 \pi'})

90

91 rticks([0 0.5*maximumLength maximumLength])

92 rticklabels({'', 'half extension', 'full extension'})

93 rtickangle(45)

94 ax.RAxisLocation = 135;

95 set(gca,'thetacolor',[0.8500 0.3250 0.0980]);

96 set(gcf, 'Position', [100, 100, 700, 250]);

97

98 title(t,("\alpha = "+(alpha/2/pi*360)+"^o, "+"\beta = ...

"+(beta/2/pi*360)+"^o, "+"\omega = "+omega+"rad/s, "+"extension ...

speed = "+speed +"m/s, "+"radius = "+ radius+"m"+", l_{max} = "+ ...

maximumLength+"m"))

99 saveas(gcf,"exports/alpha="+(alpha/2/pi*360)+"beta="+(beta/2/pi*360)...

100 +"omega="+omega+"speed="+speed+"maximumLength"+maximumLength+".fig");

101 saveas(gcf,"exports/alpha="+(alpha/2/pi*360)+"beta="+(beta/2/pi*360)...

102 +"omega="+omega+"speed="+speed+"maximumLength"+maximumLength,'epsc');

103

104

105

106

107

108

109 function l = getNextLength(length, zeta,speeddt,minspeeddt,speed, ...

maximumLength, alpha, beta ,epsilon, gamma, radius, omega)

110 %pushing sector
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111 if(zeta≥beta && zeta<alpha)

112

113 nextlength = radius / cos(zeta) - radius;

114 %is this possible with max speed?

115 if(abs(nextlength-length)>speeddt)

116 %at this moment the pole can not hold up with the given omega

117 % now you can just extend at full speed

118 nextlength= length + speeddt;

119 disp('This omega is not possible with the given parameters')

120 % or you can retract, as the pole does not help for the rotation

121 nextlength= retractAFAP(length,speeddt);

122

123 end

124 %is this possible with maximum length?

125 if(nextlength>maximumLength)

126 nextlength=maximumLength;

127 end

128

129 l=nextlength;

130 return;

131 end

132

133

134 %leverage sector

135 %first check if we can just skip everything else

136

137 touchpoint = 2 * pi - acos(radius / (radius + maximumLength ));

138

139 if(speed≥abs(radius*omega*tan(touchpoint)*sec(touchpoint)))

140

141 %if here, no need for gamma and epsilon check

142 %just check if extension or slow retraction

143

144

145 if(zeta>pi && zeta<touchpoint)

146 l= extendAFAP(length,speeddt, maximumLength);

147 return;

148 end

149

150 if(zeta<pi && zeta<touchpoint)

151 l =retractAFAP(length,speeddt);

152 return;

153 end

154
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155

156

157 nextlength = radius / cos(2*pi-zeta) - radius;

158 %is this possible with max speed?

159 if(abs(nextlength-length)<minspeeddt)

160 nextlength= length - minspeeddt;

161 end

162 %is this possible with maximum length?

163 if(nextlength<0)

164 nextlength=0;

165 end

166 if(nextlength>maximumLength)

167 nextlength=maximumLength;

168 end

169

170 l=nextlength;

171 return;

172

173

174

175

176

177 elseif (zeta≥gamma)

178 %if we are above gamma we are fast enough for retraction not AFAP

179

180 nextlength = radius / cos(2*pi-zeta) - radius;

181 %is this possible with max speed?

182 if(abs(nextlength-length)<minspeeddt)

183 nextlength= length - minspeeddt;

184 end

185 if(abs(nextlength-length)>speeddt)

186 nextlength= length - speeddt;

187 end

188 %is this possible with maximum length?

189 if(nextlength<0)

190 nextlength=0;

191 end

192 if(nextlength>maximumLength)

193 nextlength=maximumLength;

194 end

195

196 l=nextlength;

197 return;

198
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199 elseif (zeta>epsilon)

200 %retraxct as fast as possible to be at gamma at time

201 l =retractAFAP(length, speeddt);

202 return;

203 elseif(zeta > epsilon-omega*maximumLength/speed && zeta >alpha)

204 %extend for elevarage maybe before pi

205 %the condition zeta>alpha checks that pushing preferenced before

206 %levarage

207 l= extendAFAP(length,speeddt, maximumLength);

208 return;

209 end

210

211 %start extending for levaraging, if we are over pi or if we need to extend

212 %on the right side to meet gamma

213 if(zeta>pi)

214 l= extendAFAP(length,speeddt, maximumLength);

215 return;

216 end

217

218

219 % if non of the conditions is met, just retract.

220 l =retractAFAP(length,speeddt);

221

222

223 end

224

225 function lret= retractAFAP(length,speeddt)

226

227 lret= length-speeddt;

228 if(lret<0)

229 lret=0;

230 end

231

232 end

233

234 function lret= extendAFAP(length, speeddt, maximumLength)

235

236 lret= length+speeddt;

237 if(lret>maximumLength)

238 lret=maximumLength;

239 end

240

241 end

242
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243

244

245 function gR= getNextGamma(speed, radius, omega)

246

247 a= -speed/(radius*omega);

248 gR =pi + 2*atan(1/2*sqrt(1/a^2 + 4) + sqrt(1/a^2 - 4/(a*sqrt(1/a^2 + 4)) ...

- 1/(a^3*sqrt(1/a^2 + 4)))/sqrt(2) - 1/(2*a));

249

250 gR= abs(gR);

251 end

252

253 function z= getNextZeta(zeta, omega, hz)

254

255 z=zeta+omega/hz;

256 if(zeta≥2*pi)

257 z=0;

258 end

259 end

260

261 function eps= getNextEpsilon(gamma, omega, radius, maximumLength, speed)

262

263 if(maximumLength-(radius/(cos(2*pi-gamma))-radius)≤0)

264 %gamma is capable of retracting. For saftey, should not occur due to

265 %separate condition check

266 eps=gamma

267 return;

268 end

269

270 eps = gamma - omega ...

*(maximumLength-(radius/(cos(2*pi-gamma))-radius))/speed;

271

272 eps=abs(eps);

273

274 end
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Listing A.2: Omega calculataion for rod extension simulation

1 function o = getOmega(zeta, alpha, beta, speed, radius, omega)

2

3 %calculate which pole is the relevant for locomotion in that moment

4 relevantZeta = mod(zeta-beta, pi/4) + beta

5

6 o= speed/(radius*tan(relevantZeta)*sec(relevantZeta));

7

8 %maximum acceleration of omega

9 maxAcc=1; % rad/s^2

10 if(o-omega>maxAcc/100)

11 o= omega+maxAcc/100

12 end

13

14

15 end
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Listing A.3: Arduino code for serial communication with pi and controlling relais

1

2

3

4 void setup() {

5 //initialize desired pins as output pins

6 for(int i =22; i≤53; i++){

7 pinMode(i, OUTPUT);

8 digitalWrite(i, HIGH);

9 }

10 //initalize serial-communication wih a baud rate of 9600

11 Serial.begin(9600);

12 }

13

14 void loop() {

15

16

17

18 //check if serial is received

19 if (Serial.available() > 0) {

20 //Read serial

21 String data = Serial.readStringUntil('\n');

22

23 //check if data is valid

24

25 if (validateMessage(data)){

26

27 //Read the command

28 char c = data.charAt(0);

29 // Read the side

30 int side = data.substring(2,3).toInt();

31 //Read actuator number

32 int number = data.substring(4,5).toInt();

33

34 // execute function corresponing to command

35 switch(c){

36

37 case 'E': extend(side, number);

38 Serial.print("ACC extending \""+data+"\"\n");

39 break;

40 case 'R': retract(side, number);

41 Serial.print("ACC retracting \""+data+"\"\n");

42 break;
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43 case 'H': hold(side, number);

44 Serial.print("ACC holding \""+data+"\"\n");

45 break;

46 case 'X': resetAll();

47 Serial.print("ACC resetting \""+data+"\"\n");

48 break;

49 default: Serial.print("ERR unknown command \""+data+"\"\n");

50 }

51

52 }

53

54

55 }

56 }

57

58

59

60 //checks if the format is C_S_N with C=Command letter, S= side number, ...

N= number

61 bool validateMessage(String s){

62

63 //check for length 5

64 if (s.length()!=5 ) {

65 Serial.print("ERR not valid, too short \""+s+"\"\n");

66 return false;}

67

68 //cheks for the underscores

69 String command = s.substring (0,1);

70 if (!s.substring(1,2).equals("_") || !s.substring(3,4).equals("_")) {

71 Serial.print("ERR not valid, underscores missing/wrong place ...

\""+s+"\"\n");

72 return false;}

73

74

75 //check if substringing are in range (if 0 , then atoi failed, meaning ...

there is no number)

76 if(!(s.substring(2,3).toInt()≥1 && s.substring(2,3).toInt()≤2 && ...

s.substring(4,5).toInt()≥1 && s.substring(4,5).toInt()≤8)){

77 Serial.print("ERR not valid, out of range \""+s+"\"\n");

78

79 return false;

80 }

81

82 return true;

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



155

83 }

84

85 //extend actuator

86 void extend(int side, int number){

87

88 //get power and signal pin

89 int * i = numberToPin(side,number);

90

91 //energy: on, signal on:

92 digitalWrite(*i, LOW);

93 digitalWrite(*(i+1), LOW);

94

95

96

97 }

98

99 void retract(int side, int number){

100

101 //get power and signal pin

102 int * i = numberToPin(side,number);

103

104 //energy: on, signal off:

105 digitalWrite(*i, LOW);

106 digitalWrite(*(i+1), HIGH);

107

108 }

109

110 //retract all poles for 5 seconds

111 void resetAll(){

112

113 for(int side=1; side≤2; side++){

114 for(int number=1; number≤8; number++){

115 retract(side, number);

116 }

117 }

118 delay(5000);

119

120

121

122 }

123

124 void hold(int side, int number){

125

126 //get power and signal pin
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127 int * i = numberToPin(side,number);

128

129 //energy: off, signal off:

130 digitalWrite(*i, HIGH);

131 digitalWrite(*(i+1), HIGH);

132

133 }

134

135

136 //returns for a given side and the number of the pole the ...

correspondending pins of the power and the signal relai

137 int * numberToPin(int side, int number){

138 static int r[2];

139

140 // side 1 are all even, side 2 are all uneven (this is just )

141 // signal relai is 8 above the power relai

142 // example: side 1/pole 1: 22 is the power relai and 30 the signal ...

relai

143 // example: side 2/ pole 3: 27 is the power relai and 35 the signal

144 r[0] = 20 + 2*number + (side-1);

145 r[1] = r[0]+8;

146

147 // return array with both values

148 return r;

149

150

151 }
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Listing A.4: Code running on the prototype of the TLDRrobot

1 #include "TLDRrobot.h"

2

3

4 // Signal-safe flag for whether shutdown is requested

5 sig_atomic_t volatile g_request_shutdown = 0;

6

7

8 bool quiet=false, pushOnly=false, leverageOnly=false, noSerial=false, ...

poleUpTest=false,printRoll=false, ...

printPitch=false,calibrateRoll=false, calibratePitch=false, ...

useAlgortihm=false, backwards=false, printLeverage=false, ...

useStabilization=false;

9

10 float maximumAllowedLength=POLE_LENGTH*0.5;

11

12 // Replacement SIGINT handler

13 void mySigIntHandler(int sig) {

14 g_request_shutdown = 1;

15 }

16

17 void imuCallback(const sensor_msgs::Imu::ConstPtr& msg) {

18

19

20 qW=msg->orientation.w;

21 qX=msg->orientation.x;

22 qY=msg->orientation.y;

23 qZ=msg->orientation.z;

24

25 wX=msg->angular_velocity.x;

26 wY=msg->angular_velocity.y;

27 wZ=msg->angular_velocity.z;

28

29 aX=msg->linear_acceleration.x;

30 aY=msg->linear_acceleration.y;

31 aZ=msg->linear_acceleration.z;

32

33 roll = atan2f(qW*qX + qY*qZ, 0.5f - qX*qX - qY*qY);

34 if(printRoll){ROS_INFO("Initial Roll is %f", roll);}

35 pitch = asinf(-2.0f * (qX*qZ - qW*qY));

36 yaw = atan2f(qX*qY + qW*qZ, 0.5f - qY*qY - qZ*qZ);

37

38 pitch +=PI12;
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39 if(roll<0){

40 pitch= PI21-pitch;

41 }

42 pitch += compensatePitch; // compensate for 1;

43 if(pitch>PI21){

44

45 pitch-=PI21;

46 }

47 if(pitch <0){

48 pitch+=PI21;

49 }

50 pitch= PI21-pitch;

51

52

53 roll = fabs(roll);

54

55 roll= fmod(roll+compensateRoll,PI);

56

57 roll-=PI12;

58

59 if(printPitch){ROS_INFO("Pitch is %f",pitch);}

60 if(printRoll){ROS_INFO("Roll is %f", roll);}

61

62 //ROS_INFO("Omega is %f",wZ);

63 }

64 int nPoleManual =0; //number which pole is currently controlled

65 void joyCallback(const sensor_msgs::Joy::ConstPtr& msg){

66

67 if(msg->buttons[9]==1){

68 ROS_INFO("Starting algortihm");

69 useAlgortihm=true;

70 }

71 if(msg->buttons[8]==1){

72 ROS_INFO("Ending Algortihm");

73 useAlgortihm=false;

74 retractAll();

75 }

76

77 if(msg->buttons[5]==1){

78 if(useStabilization){

79 useStabilization=false;

80 retractAll();

81 ROS_INFO("Disabiling Stabilization");

82
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83 }else{

84 useStabilization=true;

85 ROS_INFO("Activating Stabilization!");

86

87 }

88 }

89

90 if(msg->buttons[4]==1){

91 cw= msg->axes[1]*0.4;

92 if(cw<-0.01){backwards=true;}

93 else{backwards=false;}

94 }

95

96 if(msg->axes[4]>0.9){

97

98 if(!leverageOnly && !pushOnly){

99 ROS_INFO("Switching to: Push Only Mode");

100 pushOnly=true;

101 leverageOnly=false;

102 }else if(pushOnly){

103 ROS_INFO("Switching to: Leverage Only Mode");

104 pushOnly=false;

105 leverageOnly=true;

106 }else{

107 ROS_INFO("Switching to: Push and Leverage Mode");

108 leverageOnly=false;

109 pushOnly=false;

110 }

111

112

113 }

114

115 if(msg->axes[4]<-0.9){

116

117 if(!leverageOnly && !pushOnly){

118 ROS_INFO("Switching to: Leverage Only Mode");

119 leverageOnly=true;

120 pushOnly=false;

121 }else if(leverageOnly){

122 ROS_INFO("Switching to: Push Only Mode");

123 pushOnly=true;

124 leverageOnly=false;

125 }else{

126 ROS_INFO("Switching to: Push and Leverage Mode");
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127 leverageOnly=false;

128 pushOnly=false;

129 }

130

131

132 }

133

134 if(msg->axes[5]>0.9){

135 nPoleManual= ++nPoleManual % 9;

136 ROS_INFO("Controlling pole %d",nPoleManual);

137 }

138

139 if(msg->axes[5]<-0.9){

140 nPoleManual=(nPoleManual-1+9)%9;

141 ROS_INFO("Controlling pole %d",nPoleManual);

142 }

143 if(nPoleManual!=0){

144

145 int start=0;

146 int end=1;

147

148 if(msg->buttons[6]==1){end=0;}

149 if(msg->buttons[7]==1){start=1;}

150

151 for(int i = start ;i≤end;i++){

152

153 if(msg->buttons[0]==1){

154 pole_arr[i][nPoleManual-1].state=Hold;

155 pole_arr[i][nPoleManual-1].manual=true;

156 pole_arr[i][nPoleManual-1].change=true;

157 }

158 if(msg->buttons[1]==1){

159 pole_arr[i][nPoleManual-1].state=Extend;

160 pole_arr[i][nPoleManual-1].manual=true;

161 pole_arr[i][nPoleManual-1].change=true;

162 }

163

164 if(msg->buttons[2]==1){

165 pole_arr[i][nPoleManual-1].state=Retract;

166 pole_arr[i][nPoleManual-1].manual=true;

167 pole_arr[i][nPoleManual-1].change=true;

168

169 }

170
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171 if(msg->buttons[3]==1){

172 pole_arr[i][nPoleManual-1].manual=false;

173

174 }

175 }

176

177 }

178 }

179

180

181 int init(){

182

183

184

185 if (wiringPiSetup () == -1) {

186 ROS_ERROR("Unable to start Serial Communication");

187 return -1 ;

188 }

189 if((fd=serialOpen(SERIAL_DEVICE,BAUD_RATE))<0){

190 ROS_ERROR("Unable to open serial device: ...

%s\n",SERIAL_DEVICE);

191 return -1;

192 }

193

194 ROS_INFO("Opening Serial Port sucessful");

195

196

197 //initiate every Pole

198 for(int i =0;i≤1;i++){

199 for(int j =0; j≤7;j++){

200

201 pole_arr[i][j]={0,i+1,j+1,Retract,false,false,0};

202 }

203 }

204

205 if(!noSerial){

206 serialPrintf(fd,"X_1_1\n");

207 delay(1000);

208 while (serialDataAvail (fd)) {

209 printf ("%c", serialGetchar(fd));

210 }

211 }

212

213 qW=2;
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214 ros::Duration(0.5).sleep();

215 ros::spinOnce();

216 while(qW==2){

217

218 ROS_INFO("Waiting for Pose Data (External)");

219 ros::Duration(2).sleep();

220 ros::spinOnce();

221 }

222 ROS_INFO("Recieving Pose Data");

223

224

225

226 if(calibratePitch){

227

228 ROS_INFO("Zeroing, make sure Pole 1 points up");

229 ros::Duration(2).sleep();

230 ros::spinOnce();

231

232 pitch = asinf(-2.0f * (qX*qZ - qW*qY));

233 roll = atan2f(qW*qX + qY*qZ, 0.5f - qX*qX - qY*qY);

234

235 pitch +=PI12;

236 if(roll<0){

237 pitch= PI21-pitch;

238 }

239 compensatePitch = PI-pitch;

240 ROS_INFO("Zeroing done, compensation for pitch is %f", compensatePitch);

241 }

242 else{

243 ROS_INFO("Using 0,033 as pitch compensation, for calibration start ...

program with -calibratePitch flag");

244 compensatePitch=0.033;

245

246 }

247 if(calibrateRoll){

248

249 ROS_INFO("Zeroing, make sure Robot is ad desired roll 0");

250 ros::Duration(2).sleep();

251 ros::spinOnce();

252

253 roll = atan2f(qW*qX + qY*qZ, 0.5f - qX*qX - qY*qY);

254

255

256 roll = fabs(roll);
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257 roll -= PI12;

258 compensateRoll=-roll;

259

260

261 ROS_INFO("Zeroing done, compensation for Roll is %f", compensateRoll);

262 }else{

263 compensateRoll=0.0;

264 ROS_INFO("Using 0.00 PI as roll compensation, for calibration start ...

program with -calibrateRoll flag");

265 }

266

267 //initial calculation of the touchangle

268 touchpoint = PI21 - acos(RADIUS / (RADIUS + POLE_LENGTH ));

269

270 return 1;

271 }

272

273

274

275

276 int main (int argc, char **argv)

277 {

278 ros::init(argc, argv, "TLDRrobot_node", ...

ros::init_options::NoSigintHandler);

279 ros::NodeHandle nh;

280

281 ros::Subscriber subImu = nh.subscribe("orientation", 2, imuCallback);

282 ros::Subscriber subJoy = nh.subscribe("joy",10,joyCallback);

283

284

285 ros::Publisher pub = ...

nh.advertise<TLDRrobot::TLDR_msg>("TLDRstatusPub", 1000);

286

287 ros::Rate rate(RATE);

288

289 signal(SIGINT, mySigIntHandler);

290

291 argumentHandler(argc, argv);

292

293

294

295 init();

296

297 serialPrintf(fd,"X_1_1\n");
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298

299 while (ros::ok() && !g_request_shutdown)

300 {

301

302 calculatVariables();

303 updatePoleStates();

304

305

306 updatePoleLength();

307

308

309 if(!noSerial){

310 updateSerialCommunication();}

311

312 pub.publish(getStatusMsg());

313 ros::spinOnce();

314 rate.sleep();

315 }

316 ROS_INFO("Closing, Goodbye!");

317 serialPrintf(fd,"X_1_1\n");

318 ros::shutdown();

319 }

320 //send for each pole the message in form C_S_N (Comman Side Number) if ...

the change indicator is true (prohibiting multiple sends)

321 void updateSerialCommunication(){

322

323 for(int i =0;i≤1;i++){

324 for(int j =0; j≤7;j++){

325

326

327 if(pole_arr[i][j].change||((n%100)==pole_arr[i][j].number*10)){

328

329 if(pole_arr[i][j].state==Hold) ...

serialPrintf(fd,("H_"+std::to_string(pole_arr[i][j].side)

330 +"_"+std::to_string((pole_arr[i][j].number-i+7)%8+1)+"\n").c_str());

331 if(pole_arr[i][j].state==Extend

332 ||pole_arr[i][j].state==ExtendFruitless) ...

serialPrintf(fd,("E_"+std::to_string(pole_arr[i][j].side)

333 +"_"+std::to_string((pole_arr[i][j].number-i+7)%8+1)+"\n").c_str());

334 if(pole_arr[i][j].state==Retract) ...

serialPrintf(fd,("R_"+std::to_string(pole_arr[i][j].side)

335 +"_"+std::to_string((pole_arr[i][j].number-i+7)%8+1)+"\n").c_str());

336 pole_arr[i][j].change=false;

337 }
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338

339

340 }

341 }

342

343

344

345

346 }

347 //update the theoratical pole length. There is no real feedback to ...

validate the length

348 void updatePoleLength(){

349

350

351 for(int i =0;i≤1;i++){

352 for(int j =0; j≤7;j++){

353

354

355 if(pole_arr[i][j].state==Extend) ...

pole_arr[i][j].length += POLE_SPEED * dt;

356 if(pole_arr[i][j].state==Retract) ...

pole_arr[i][j].length -= POLE_SPEED * dt;

357 if(pole_arr[i][j].length>POLE_LENGTH) ...

pole_arr[i][j].length=POLE_LENGTH;

358 if(pole_arr[i][j].length<0) pole_arr[i][j].length=0;

359

360

361 }

362 }

363

364

365

366 }

367

368 void avoidCloseRangeProblem(){

369

370

371

372 for(int i =0;i≤1;i++){

373 for(int j =0; j≤7;j++){

374

375 if(pole_arr[i][j].state==Retract && pole_arr[i][j].change && ...

pole_arr[i][j].length<CLOSE_RANGE && ...

pole_arr[i][j].length>0.000001){
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376 pole_arr[i][j].state=Extend;

377 }

378

379 if(pole_arr[i][j].length≥maximumAllowedLength && ...

pole_arr[i][j].state!=Retract){

380 //pole_arr[i][j].state=Hold;

381 }

382

383 }

384

385 }

386

387 }

388

389

390 void retractAll(){

391

392

393

394 for(int i =0;i≤1;i++){

395 for(int j =0; j≤7;j++){

396

397 pole_arr[i][j].state=Retract;

398

399 }

400

401 }

402 serialPrintf(fd,"\n");

403 serialPrintf(fd,"X_1_1\n");

404

405 }

406

407 //stabilize algortihm. Retun -1 = error, Return 0: success but may be ...

overwritten, Return 1, sucess but is not allowed to be overwritten

408 int stabilize(Pole & p, float angleRoll, float anglePitch, bool locomotion){

409

410

411

412 if(fabs(angleRoll)>38.9*DEG2RAD){

413 ROS_WARN("We are falling over and there is nothing i can do");

414 //return -1;

415 }

416 float zeta = anglePitch + (p.number-1)*PI14;

417 if(zeta>PI21){
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418 zeta-=PI21;

419 }

420

421 float l_balance = RADIUS_M /((float)cosf(zeta))-RADIUS;

422

423 if(backwards){

424 anglePitch = PI21-anglePitch;

425 zeta= PI21-zeta;

426 }

427

428

429 float threshold=0.05;

430 float err = -angleRoll;

431 if(p.side==2){

432 err= angleRoll;

433 }

434

435

436 if(zeta>beta && zeta < alpha){

437 if(err>threshold)

438 {

439 p.state=ExtendFruitless;

440 return 1;

441 }

442 if(err<-threshold){

443 p.state=Position;

444 p.cLength= RADIUS_M-RADIUS;

445 return 1;

446 }

447 if(p.length<l_balance){

448 p.state=Extend;

449 return 1;

450 }

451 p.state=Hold;

452 return 0;

453 }

454

455 if(zeta< PI21-beta && zeta > PI21-alpha && !locomotion){

456

457

458 if(err>threshold)

459 {

460 p.state=ExtendFruitless;

461 return 1;
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462 }

463 if(err<-threshold){

464 p.state=Position;

465 p.cLength= RADIUS_M-RADIUS;

466 return 1;

467 }

468

469 if(p.length<l_balance){

470 p.state=Extend;

471 return 1;

472 }

473 p.state=Hold;

474 return 1;

475

476

477 }

478 p.state=Retract;

479 return 0;

480

481

482

483

484 }

485

486

487 void changePointUp(Pole & p, float angle){

488

489 float zeta = angle + (p.number-1)*PI14;

490 if(zeta>PI21){

491 zeta-=PI21;

492 }

493

494

495 if(zeta > PI-PI18 && zeta<PI+PI18){

496 p.state= Extend;

497 ROS_INFO("Pole %d is looking upwards!", p.number);

498 }else{

499 p.state = Retract;

500 }

501

502 }

503

504

505
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506

507

508 void updatePoleStates(){

509

510

511

512

513

514 for(int i =0;i≤1;i++){

515 for(int j =0; j≤7;j++){

516 if(!pole_arr[i][j].manual){

517 State temp = pole_arr[i][j].state;

518

519 int overrideStabi=0;

520 if(useStabilization){

521 overrideStabi=stabilize(pole_arr[i][j],roll,pitch,useAlgortihm);

522 }

523

524 if(useAlgortihm && overrideStabi == 0){

525 //For TEsting:

526 if(poleUpTest){changePointUp(pole_arr[i][j],pitch);}

527 //actual algorithm

528 else{ changePoleState(pole_arr[i][j],pitch );}

529 }

530 if(pole_arr[i][j].state==Position){

531 positionStateProcessing(pole_arr[i][j]);

532 }

533 avoidCloseRangeProblem();

534 if(temp != pole_arr[i][j].state){pole_arr[i][j].change = true;}

535 }

536 }

537 }

538

539

540

541

542

543

544 }

545

546 void positionStateProcessing(Pole & p){

547

548

549 if(p.state!=Position)return;
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550

551 if (p.cLength<CLOSE_RANGE)p.cLength=0;

552 if(p.cLength>POLE_LENGTH)p.cLength=POLE_LENGTH;

553 if(p.cLength< p.length-0.01){p.state=Retract;}

554 else if(p.cLength>p.length+0.01){p.state=Extend;

555 }

556 else{p.state=Hold;}

557

558 }

559

560

561 void changePoleState(Pole & p, float angle){

562

563 float zeta = std::fmod(angle + (p.number-1)*PI14, PI21);

564 float zetaNext = std::fmod(zeta + wZ*dt, PI21);

565

566

567 if(backwards){

568 angle = PI21-angle;

569 zeta= PI21-zeta;

570 zetaNext=PI21-zetaNext;

571 }

572

573

574 if(fabs(cw)<0.001){

575 p.state=Retract;

576

577 return;

578 }

579

580 if(zeta ≤alpha && !leverageOnly){

581 if(zeta≥ beta){p.state= Extend;}

582 else{p.state=Hold;}

583 return;

584 }

585

586 //just pushing behaviour=> return now.

587 if(pushOnly){

588 p.state= Retract;

589 return;}

590

591 if(printLeverage)ROS_INFO("What am i going to do with zeta %f of ...

pole number %d", zeta , p.number);

592 //minimum problem

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



171

593 if(zeta> PI21-acos(RADIUS/(RADIUS+CLOSE_RANGE))){

594 if(printLeverage)ROS_INFO("I am retracting, to avoid minium problem");

595 p.state=Retract;

596 return;

597 }

598

599 //climbinign, saftey, as otherwise pole damage

600 if(!pushOnly && !leverageOnly){

601 if(zeta>PI&&zeta < (PI+PI14)){p.state=Extend; return;}

602 else{p.state=Retract; return;}}

603

604 if(max_retractionspeed_needed < POLE_SPEED){

605 if(printLeverage)ROS_INFO("Leverage: retraction is fast enough, ...

therefore extension after PI and retraction from moment we woudl ...

touch ground");

606

607 float rattle=0; //if zeta is eaxactly on one value this would ...

lead to rattle. Thefore this rattle factor leads to a hysteresis

608 if(p.state==Retract){rattle=0.05;}

609 if(zeta +rattle > PI && zetaNext+rattle<touchpoint){

610 //(RADIUS/cos(PI21-zetaNext-rattle)-RADIUS > p.length+L_MARGIN

611 // || zetaNext+rattle<touchpoint)){

612 p.state=Extend;

613 if(printLeverage)ROS_INFO("Extending, becauese i am fast ...

enough and not in danger ");

614 }

615 else{

616 if(printLeverage)ROS_INFO("Retracting, i would otherwise touch ...

the ground");

617 p.state= Retract;}

618

619 return;

620 }

621 if(zeta > gammaAngle){

622

623 if( RADIUS/cos(PI21-zetaNext)-RADIUS < p.length-L_MARGIN){

624 p.state = Retract;

625 if(printLeverage)ROS_INFO("Retracting as i am over gamma, but ...

would touch the ground");

626 }else{

627 if(printLeverage)ROS_INFO("Holding, as i am over gamma but will ...

not touch the ground");

628 p.state= Hold;

629 if(p.length<CLOSE_RANGE){
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630 p.state=Retract; // minimum distance problem

631 }

632 }

633 return;

634 }

635 if(zeta≥epsilon){

636 p.state=Retract;

637 if(printLeverage){ROS_INFO("Reteacting, as fast as i can, because i ...

have not reached gamma bit am over epsilon.");}

638 return;}

639 if((zeta > epsilon_s || zeta > PI) && zeta > alpha){

640 p.state = Extend;

641 if(printLeverage)ROS_INFO("Extending, as i am over pi or epsioln s ...

(and of course over alpha)");

642 return;

643 }

644 p.state=Retract;

645

646

647 }

648 void calculatVariables(){

649

650 float angVel= fabs(wZ); //choose abs(cw) for save operation. If fast ...

enough poles choose abs(wZ)

651

652 //max_speed_needed- calculation; if the speed is slower then we cna ...

provide, no need for further calculations.

653 max_retractionspeed_needed = ...

fabs(RADIUS*angVel*tan(touchpoint)/cos(touchpoint));

654

655 if(max_retractionspeed_needed < POLE_SPEED){

656 return;}

657

658

659 //Gamma calculation

660

661 float a= -POLE_SPEED/(RADIUS*angVel);

662 float aa = a*a;

663 gammaAngle = PI + 2.0*atan(0.5*sqrt(1.0/aa + 4.0) + sqrt(1.0/aa - ...

4.0/(a*sqrt(1.0/aa + 4)) - 1.0/(aa*a*sqrt(1.0/aa + 4.0)))/sqrt(2.0) ...

- 1.0/(2.0*a));

664

665

666
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667

668

669 //epsilon calculation

670 if(POLE_LENGTH -(RADIUS/(cos(PI21-gammaAngle))-RADIUS)≤0){

671 //gamma is capable of retracting. For saftey, should not occur due ...

to separate condition check

672 epsilon =gammaAngle;

673 }

674 else{

675 epsilon = gammaAngle - angVel ...

*(POLE_LENGTH-(RADIUS/(cos(PI21-gammaAngle))-RADIUS))/POLE_SPEED;

676

677 epsilon=fabs(epsilon);

678

679 }

680

681 epsilon_s= epsilon-angVel*POLE_LENGTH/POLE_SPEED;

682 if(printLeverage){

683 ROS_INFO("Variables: epsilon %f deg, epsilon_s %f deg, gamma %f deg, ...

touchpoint %f deg with cw of %f",

684 (epsilon*RAD2DEG),(epsilon_s*RAD2DEG),(gammaAngle*RAD2DEG),

685 (touchpoint*RAD2DEG),angVel);

686 }

687

688 }

689

690

691 TLDRrobot::TLDR_msg getStatusMsg(){

692

693

694 TLDRrobot::TLDR_msg msg;

695

696 msg.header.stamp = ros::Time::now();

697 msg.header.seq= n++;

698

699 msg.pitch=pitch;

700 msg.roll=roll;

701 msg.cw=cw;

702 msg.w=wZ;

703

704 msg.ext_length= POLE_LENGTH;

705

706 float factor = 1.0/POLE_LENGTH;

707
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708 for(int i =0;i≤1;i++){

709 for(int j =0; j≤7;j++){

710

711

712 msg.pole_stat.push_back(pole_arr[i][j].state);

713 msg.pole_ext.push_back(pole_arr[i][j].length*factor);

714

715 }

716 }

717 return msg;

718

719 }

720 int argumentHandler(int argc, char *argv[]) {

721

722 for (int i = 1; i < argc; ++i) {

723 std::string argi = argv[i];

724 if (argi.compare("-q") == 0) {

725 quiet = true;

726 ROS_INFO(

727 "Quiet Mode activated! No receiing data or repetetive ...

Messages will be shown. Start-up information, ...

Errors and warning etc will be shown!!\n");

728 }

729 if (argi.compare("-noSerial") == 0) {

730 noSerial= true;

731 ROS_INFO("No Serial COmmunication during algortihm. There ...

will be no actual movement. Initalization will still be ...

done.");

732 }

733

734

735 if (argi.compare("-activateSerial") == 0) {

736 noSerial= false;

737 ROS_INFO("Startign with serial communication");

738 }

739

740 if (argi.compare("-useAlgortihm") == 0) {

741 useAlgortihm= true;

742 ROS_INFO("Starting using the algortihm");

743 }

744

745 if (argi.compare("-pushOnly") == 0) {

746

747 pushOnly = true;
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748 ROS_INFO("Push only mode");

749 if(leverageOnly){

750 ROS_WARN("Leverage only Only was activated, will be ...

deactivated");

751 leverageOnly=false;

752 }

753 }

754 if (argi.compare("-leverageOnly") == 0) {

755

756 leverageOnly = true;

757 ROS_INFO("leverage only mode activated");

758 if(pushOnly){

759 ROS_WARN("Push Only was activated, will be deactivated");

760 pushOnly=false;

761 }

762 }

763 if (argi.compare("-poleUpTest") == 0) {

764

765 poleUpTest = true;

766

767 }

768

769 if (argi.compare("-useStabilization") == 0) {

770

771 useStabilization = true;

772

773 ROS_INFO("Stabilization of roll activated.");

774

775 }

776

777 if (argi.compare("-printPitch") == 0) {

778

779 printPitch = true;

780

781 }

782 if (argi.compare("-printRoll") == 0) {

783

784 printRoll = true;

785

786 }

787 if (argi.compare("-calibratePitch") == 0) {

788

789 calibratePitch = true;

790
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791 }

792 if (argi.compare("-calibrateRoll") == 0) {

793

794 calibrateRoll = true;

795

796 }

797 if (argi.compare("-printLeverage") == 0) {

798

799 printLeverage = true;

800

801 }

802 if (argi.compare("-alpha") == 0) {

803 if (i + 1 < argc) {

804 i++;

805 alpha = atof(argv[i]);

806 ROS_INFO("alpha set to %f deg\n", alpha);

807 alpha = alpha*DEG2RAD;

808

809 }

810 }

811

812 if (argi.compare("-beta") == 0) {

813 if (i + 1 < argc) {

814 i++;

815 beta = atof(argv[i]);

816 ROS_INFO("beta set to %f deg \n", beta);

817 beta = beta*DEG2RAD;

818

819 }

820 }

821 if (argi.compare("-cw") == 0) {

822 if (i + 1 < argc) {

823 i++;

824 cw = atof(argv[i]);

825 ROS_INFO("command omega cw set to %f rad/s\n", cw);

826

827 }

828 }

829 }

830 return 1;

831 }
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Listing A.5: Header for the code running on the prototype of the TLDRrobot

1 #ifndef TLDR_H

2 #define TLDR_H

3

4 #include <ros/ros.h>

5 #include <wiringSerial.h>

6 #include <wiringPi.h>

7 #include <sensor_msgs/Imu.h>

8 #include <sensor_msgs/Joy.h>

9 #include <iostream>

10 #include <string>

11 #include <unistd.h>

12 #include <signal.h>

13 #include "TLDRrobot/TLDR_msg.h"

14 #include <cmath>

15

16 #define SERIAL_DEVICE "/dev/ttyUSB0"

17 #define BAUD_RATE 9600 //per s

18 #define POLE_SPEED 0.14 // in m per s

19 #define POLE_LENGTH 0.95 // in m

20 #define RATE 125 //calculation rate

21 #define DEFAULT_ALPHA 57 //in degree

22 #define DEFAULT_BETA 2 //in degree

23 #define RADIUS 0.4 //in m

24 #define RADIUS_M 0.50

25 #define CLOSE_RANGE 0.15 // in m, tareting a region of the actuator ...

where retracting can not be started.

26

27 //constants

28 #define DEG2RAD 0.017453293

29 #define RAD2DEG 57.2957795

30 #define PI 3.1415926536

31 #define PI12 1.5707963268

32 #define PI14 0.7853981634

33 #define PI18 0.3926990817

34 #define PI21 6.2831853072

35 #define PI32 4.7123889804

36

37 #define L_MARGIN 0.05 // in m. This will compensates fot the uncertainty ...

of the pole length

38

39 //Hold, extend and retract pole. With state position the pole is ...

extended or rectected dependend on the commanded length cLength. ...
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With ExtendFruitless, Extending is initiated but no length is integrated

40 enum State {Hold, Extend, Retract, Position,ExtendFruitless};

41

42 struct Pole {

43 float length;

44 int side;

45 int number;

46 State state;

47 bool change;

48 bool manual;

49 float cLength;

50 };

51

52 struct Pole pole_arr[2][8];

53

54

55 // orientation and velocity data by imu

56 float qW;

57 float qX;

58 float qY;

59 float qZ;

60

61 float aX;

62 float aY;

63 float aZ;

64

65 float wX;

66 float wY;

67 float wZ;

68

69 float roll;

70 float pitch;

71 float yaw;

72

73

74 float compensatePitch;

75 float compensateRoll;

76 //commaned omega

77 float cw;

78

79

80 //serial communication id

81 int fd;

82 //variables from mathematical model
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83 float alpha= DEFAULT_ALPHA*DEG2RAD;

84 float beta= DEFAULT_BETA*DEG2RAD;

85 float gammaAngle;//gamma already defined by standard liberys

86 float epsilon;

87 float epsilon_s;

88 float max_retractionspeed_needed;

89

90

91 //angle at whoch fully extend pole will touch groudn. Calculatetd in init.

92 float touchpoint;

93

94

95 //current dt

96 float dt = 1.0/RATE;

97

98

99 int n=0;

100

101 void updatePoleStates();

102 void updateSerialCommunication();

103 void updatePoleLength();

104 void changePoleState(Pole & p, float angle);

105 void calculatVariables();

106 int argumentHandler(int argc, char *argv[]);

107 void avoidCloseRangeProblem();

108 void retractAll();

109 int stabilize(Pole & p, float angleRoll, float anglePitch, bool locomotion);

110 void positionStateProcessing(Pole & p);

111 TLDRrobot::TLDR_msg getStatusMsg();

112 #endif
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Listing A.6: Message structure of the TLDR msg used for ROS

1 Header header

2 string child_frame_id

3

4 float64[] pole_ext

5 uint8[] pole_stat

6

7 float64 ext_length

8

9 float64 w

10 float64 cw

11

12 float64 pitch

13 float64 roll

TLDR Robot

Telescopic Linear Driven Rotation Robot —

A Locomotion Approach for Spherical Robots



Appendix B

Calculations

s(x) = sin(x) as(x) = arcsin(x) c(x) = cos(x) ac(x) = arccos(x) t(x) = tan(x) at(x) = arctan(x)

l =
(−t(φVPIP) · sf · c(φr) · ds

m − rm + sf · s(φr) · ds
m) · ||dmt|| · rs + lmax

t(φVPIP) · dmtx + t(θVPIP) · dmty + dmtz
− rs

l =

(−t(φVPIP) · sf · c(φr) · s
(

ac
(

rs

rm

))

· rm − rm + sf · s(φr) · s
(

ac
(

rs

rm

))

· rm)

·

√

√

√

√

√

(sf · c(φr) · s
(

ac
(

rs

rm

))

· rm − c(ζ) · rs · s(φr))2 + (s(ζ) · rs)2

+ (rm − sf · s(φr) · s
(

ac
(

rs

rm

))

· rm − c(ζ) · rs · c(φr))2
· rs + lmax

t(φVPIP) · (sf · c(φr) · s
(

ac
(

rs

rm

))

· rm − c(ζ) · rs · s(φr)) − t(θVPIP) · s(ζ) · rs + rm

− sf · s(φr) · s
(

ac
(

rs

rm

))

· rm − c(ζ) · rs · c(φr)

− rs

(B.1)
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Figure B.1: Calculation of ζ∆ when overcoming an perpendicular obstacle and leverage mode is avali-
able.
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Figure B.2: Calculation of the φcatastrophic with variable h (referred to as ds

m
)
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Figure B.3: Variable illustration for lside calculation for general disc robot (above) and spherical
robot(below).
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Figure B.4: Calculation visualization of line-estimation of single pole for the VPIP.
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